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Chapter One: Mathematical preliminaries 

Electrodynamics is a synthesis of several empirical laws: Coulomb’s law, Faraday’s law 

and Ampére’s law. Even though these empirical laws had been discovered for some time 

before Maxwell obtained his famous modification on Ampére’s law, they could not form a 

complete self-consistent theory. Consequently, the equations of electrodynamics are called 

Maxwell’s equations. Maxwell Equations are the absolute necessity for understanding all 

technological developments in electricity and magnetism. All electrical devices, radio, 

television, microwaves, optics and to a large extent up to X-rays and -rays can be fully 

explained in terms of Maxwell’s equations. Furthermore, Maxwell’s equations already satisfy 

the all requirement of the special relativity. In addition to the classical wave theory, 

electrodynamics in the form of Maxwell’s equations provides a rich feast for the developing 

the modern field theory. Modern theories of quarks are indeed based on a theory modeled on 

Maxwell’s equations. The same as the field theory, many diverse areas of physics can be 

figured out more deeply from a study of electrodynamics. Historically, Maxwell tried to 

interpret electrodynamics as a seismological theory and called the elastic vibrations of an 

all-pervading substance as the æther. The description of electrodynamics is closely associated 

with the knowledge of vector calculus because electrodynamics is a field theory of a vector 

field. Therefore, it is fundamentally important to review some of knowledge of vector 

calculus. 

1. Gradient 

    In mathematics, the gradient is a generalization of the usual concept of derivative of a 

function in one dimension to a function in several dimensions. Similarly to the usual 

derivative, the gradient represents the slope of the tangent of the graph of the function. More 

precisely, the gradient points in the direction of the greatest rate of increase of the function 

and its magnitude is the slope of the graph in that direction. The components of the gradient 

in coordinates are the coefficients of the variables in the equation of the tangent space to the 

graph. This characterizing property of the gradient allows it to be defined independently of a 

choice of coordinate system, as a vector field whose components in a coordinate system will 

transform when going from one coordinate system to another. The more general gradient, 

called simply the gradient in vector analysis, is a vector operator denoted   and sometimes 

also called del or nabla. It is most often applied to a real function ),,( 321 qqqf  of three 



2 
 

variables , and may be denoted )(grad),,( 321 fqqqf  . For general curvilinear coordinates, 

the gradient is given by  
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In Cartesian coordinates, f  simplifies to 
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The direction of f  is the orientation in which the directional derivative has the largest 

value and || f  is the value of that directional derivative. 

  

 

Gradient of the 2-d function f(x, y) = xexp[-(x2+y2)] is 

plotted as blue arrows over the pseudocolor plot of the 

function. 

 

The gradient of a function is called a gradient field. A (continuous) gradient field is 

always a conservative vector field: its line integral along any path depends only on the 

endpoints of the path, and can be evaluated by the gradient theorem (the fundamental theorem 

of calculus for line integrals). Conversely, a (continuous) conservative vector field is always 

the gradient of a function. The gradient theorem, also known as the fundamental theorem of 

calculus for line integrals, says that a line integral through a gradient field can be evaluated 

by evaluating the original scalar field at the endpoints of the curve. Let RR  nU: . 

Now suppose the domain U of  contains the differentiable curve γ with endpoints p and q, 

(oriented in the direction from p to q). Then 
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It is a generalization of the fundamental theorem of calculus to any curve in a plane or space 

(generally n-dimensional) rather than just the real line. The gradient theorem implies that line 

integrals through gradient fields are path independent. In physics this theorem is one of the 

ways of defining a "conservative" force. By placing  as potential, ∇ is a conservative 

field. Work done by conservative forces does not depend on the path followed by the object, 

but only the end points, as the above equation shows. The gradient theorem also has an 
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interesting converse: any path-independent vector field can be expressed as the gradient of a 

scalar field. Just like the gradient theorem itself, this converse has many striking 

consequences and applications in both pure and applied mathematics. 

2. Divergence 

In vector calculus, divergence is a vector operator that measures the magnitude of a vector 

field's source or sink at a given point, in terms of a signed scalar. More technically, the 

divergence represents the volume density of the outward flux of a vector field from an 

infinitesimal volume around a given point. It is a local measure of its "outgoingness"—the 

extent to which there is more exiting an infinitesimal region of space than entering it. If the 

divergence is nonzero at some point then there must be a source or sink at that position. More 

rigorously, the divergence of a vector field F at a point p is defined as the limit of the net flow 

of F across the smooth boundary of a three-dimensional region V divided by the volume of V 

as V shrinks to p. Formally, 
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where S is the surface enclosing the volume V and the integral is a surface integral with n 

being the outward unit normal to that surface. The result, div F, is a function of p. From this 

definition it also becomes explicitly visible that div F can be seen as the source density of the 

flux of F. In light of the physical interpretation, a vector field with constant zero divergence is 

called incompressible or solenoidal – in this case, no net flow can occur across any closed 

surface. The intuition that the sum of all sources minus the sum of all sinks should give the 

net flow outwards of a region is made precise by the divergence theorem. 

A formula for the divergence of a vector field can immediately be written down in 

Cartesian coordinates by constructing a hypothetical infinitesimal cubical box oriented along 

the coordinate axes around an infinitesimal region of space. There are six sides to this box, 

and the net "content" leaving the box is therefore simply the sum of differences in the values 

of the vector field along the three sets of parallel sides of the box. Writing ),,( zyx FFFF  , it 

therefore following immediately that 
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This formula also provides the motivation behind the adoption of the symbol   for the 

divergence. Interpreting   as the gradient operator )/,/,/( zyx  , the "dot 

product" of this vector operator with the original vector field ),,( zyx FFFF   is precisely 

equation (2.2). While this derivative seems to in some way favor Cartesian coordinates, the 

general definition is completely free of the coordinates chosen. In fact, defining  

321 qqqF ˆˆˆ 321 FFF   ,           (2.3) 

the divergence in arbitrary orthogonal curvilinear coordinates is simply given by 
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For a vector expressed in cylindrical coordinates as 

 zFFF zφρ aaaF                (2.5) 

where ia  is the unit vector in direction i, the divergence is 
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In spherical coordinates, with  the angle with the z axis and  the rotation around the z axis, 

the divergence reads 
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There is a product rule of the following type: if  is a scalar valued function and F is a vector 

field, then 

 )()()( FFF  .          (2.8) 

Another product rule for the cross product of two vector fields F and G in three dimensions 

involves the curl and reads as follows: 
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 )()()( GFGFGF   .        (2.9) 

The Laplacian of a scalar field is the divergence of the field's gradient: 

  2)(  .            (2.10) 

The divergence of the curl of any vector field (in three dimensions) is equal to zero: 

 0)(  F  .             (2.11) 

If a vector field F with zero divergence is defined on a ball in R3, then there exists some 

vector field G on the ball with F = curl(G). 

In vector calculus, the divergence theorem, also known as Gauss's theorem or 

Ostrogradsky's theorem, is a result that relates the flow (that is, flux) of a vector field 

through a surface to the behavior of the vector field inside the surface. More precisely, the 

divergence theorem states that the outward flux of a vector field through a closed surface is 

equal to the volume integral of the divergence over the region inside the surface. Suppose V is 

a subset of Rn
 (in the case of n = 3, V represents a volume in 3D space) which is compact and 

has a piecewise smooth boundary S (also indicated with ∂V = S ). If F is a continuously 

differentiable vector field defined on a neighborhood of V, then we 

have:  
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The left side is a volume integral over the volume V, the right side is the surface integral over 

the boundary of the volume V. The closed manifold ∂V is quite generally the boundary of V 

oriented by outward-pointing normals, and n is the outward pointing unit normal field of the 

boundary ∂V. (dS may be used as a shorthand for nda.) The symbol within the two integrals 

stresses once more that ∂V is a closed surface. In terms of the intuitive description above, the 

left-hand side of the equation represents the total of the sources in the volume V, and the 

right-hand side represents the total flow across the boundary S. 
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 The divergence theorem can be used to calculate a flux through a 

closed surface that fully encloses a volume, like any of the surfaces on 

the left. It can not directly be used to calculate the flux through 

surfaces with boundaries, like those on the right. (Surfaces are blue, 

boundaries are red.) 

 

3. Curl 

In vector calculus, the curl is a vector operator that describes the infinitesimal rotation of a 

3-dimensional vector field. At every point in the field, the curl of that point is represented by a 

vector. The attributes of this vector (length and direction) characterize the rotation at that 

point. The direction of the curl is the axis of rotation, as determined by the right-hand rule, 

and the magnitude of the curl is the magnitude of rotation. If the vector field represents the 

flow velocity of a moving fluid, then the curl is the circulation 

density of the fluid. A vector field whose curl is zero is called 

irrotational. The curl is a form of differentiation for vector fields. 

The corresponding form of the fundamental theorem of calculus is 

Stokes' theorem, which relates the surface integral of the curl of a 

vector field to the line integral of the vector field around the boundary curve. The curl of a 

vector field F, denoted by curl F, or ∇ × F, or rot F, at a point is defined in terms of its 

projection onto various lines through the point. If n is any unit vector, the projection of the 

curl of F onto n is defined to be the limiting value of a closed line integral in a plane 

orthogonal to n as the path used in the integral becomes infinitesimally close to the point, 

divided by the area enclosed. Implicitly, curl is defined by:  
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where the right hand side is a line integral along the boundary of the area in question, and A is 

the magnitude of the area. If v̂  is an outward pointing in-plane normal, whereas n̂  is the 

unit vector perpendicular to the plane (see caption at right), then the orientation of C is chosen 

so that a tangent vector ̂  to C is positively oriented if and only if }ˆ,ˆ,ˆ{ vn  forms a 
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positively oriented basis for R3 (right-hand rule). The above formula means that the curl of a 

vector field is defined as the infinitesimal area density of the circulation of that field.  

The name "curl" was first suggested by James Clerk Maxwell in 1871 but the concept 

was apparently first used in the construction of an optical field theory by James MacCullagh 

in 1839. The curl can be defined in arbitrary orthogonal curvilinear coordinates using 

321 qqqF ˆˆˆ 321 FFF   and defining |/| ii qh  r as  

332211

321

33221

321

ˆˆˆ
1

FhFhFh
qqq

hhh

hhh 








qqq

F
1

 .         (3.2) 

Each component can be expressed as 
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Note that the equation for each component, k)( F  can be obtained by exchanging each 

occurrence of a subscript 1, 2, 3 in cyclic permutation: 1→2, 2→3, and 3→1 (where the 

subscripts represent the relevant indices).  

In general curvilinear coordinates (not only in Cartesian coordinates), the curl of a cross 

product of vector fields G and F can be shown to be 

GFFFGGGF ])[(])[()(  .      (3.6) 

Interchanging the vector field F and ∇ operator, we arrive at the cross product of a vector field 

with curl of a vector field: 

 GFGFGF )()()(  G  ,         (3.7) 

using the Feynman subscript notation, ∇G, which operates only on the vector field G. Another 

example is the curl of a curl of a vector field. It can be shown that in general coordinates 



8 
 

 FFF 2)()(   .          (3.8) 

and this identity defines the vector Laplacian of F, symbolized as ∇2F. The curl of the gradient 

of any scalar field  is always the zero vector field 

 0)(   ,             (3.9) 

which follows from the antisymmetry in the definition of the curl, and the symmetry of 

second derivatives. If  is a scalar valued function and F is a vector field, then 

 FFF  )( .           (3.10) 
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Chapter Two: Electrostatics  

1. Coulomb’s Law & Gauss’s Law 

Coulomb’s law for the electric field at the point r due to a point charge q1 at the point r1 is 

given by 
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In the SI system, the constant 1)4( 
o  is equal to 10-7c2. The experimentally observed linear 

superposition of forces due to many charges means that the electric field at r due to a system 

of point charges qi located at ri, i=1,2,….,n, is expressed as the vector sum   
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If the charges are so small and so numerous that they can be described by a charge density 

(r), Eq. (1.2) is replaced by an integral: 

  

 rd

o

3
3)(

4
1)(

rr
rrrrE 


 ,          (1.3) 

where zdydxdrd 3  is a three-dimensional volume element at rʹ.  

Gauss’s law is sometimes more useful and furthermore leads to a differential equation for 

)(rE . Considering a point charge q and a closed surface S, as shown in Fig. 1.2, the flux of 

the electric field produced by this charge through the surface element da is given by 
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where r is the distance from the charge to the surface element, n is the outwardly directed unit 

normal to the surface element, and  is the angle between the E and n. In terms of the solid 

angle, we have  drda 2cos . Therefore, 
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Integrating the normal component of E over the whole surface, it can be shown that 
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This result is Gauss’s law for a single point charge. For a discrete set of charges, it is 
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immediately apparent that 
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where the sum is over only those charge inside the surface S. For a continuous charge density 

)(r , Gauss’s law becomes 
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where V is the volume enclosed by S. The surface integral on the left-hand side is transformed 

into a volume integral with the help of the Gauss theorem: 
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Hence, 
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Since this is valid for an arbitrary volume, we obtain the relation 

 o /)(rE   .             (1.11) 

This equation indicates that the charges in space are the sources (positive charges) and sinks 

(negative charges) of the electric field. 

2. Electric Potential 

Next the electric field can be written as the gradient of a potential. From 
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and using the fact that 
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the electric field can be given by 
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Thus, the field intensity can be derived as the gradient of a potential. The potential )(r  is 

obtained as the integral over the entire charge distribution: 
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With this definition, we can write for the field intensity 

 )()( rrE  .             (2.5) 

Since the curl of the gradient of any well-behaved scalar function of position vanishes, we 

obtain 

 0)(  rE  .              (2.6) 

This equation also implies that electrostatic forces are conservative forces. In other words, the 

electrostatic field is irrotational. Combining Gauss’s law and Eq. (5), we have 

 o /)()(2 rr   .            (2.7) 

This equation is called Poisson’s equation; for a charge-free region 0 , and Poisson’s 

equation reduces to the Laplace equation 

 0)(2  r  .              (2.8) 

3. Discontinuities in the Electric Field and Potential 

The determination of electric field or potential due to a given surface distribution of charges is 

one of the common problems in electrostatics. Considering that a surface S, with a unit 

normal n directed from side 1 to side 2 of the surface, has a surface-charge density of (r) and 

electric fields E1 and E2 on either side of the surface, as shown in Fig. 1.4, Gauss’s law gives 

immediately that  

 o /)( 12  nEE  .           (3.1) 

This equation indicates that there is a discontinuity of /o in the normal component of 

electric field in crossing a surface with a surface-charge density , the crossing being made in 

the direction of n. On the other hand, the tangential component of electric field can be shown 

to be continuous across a boundary surface by using the line integral for E around a closed 

path. It is only necessary to take a rectangular path with negligible ends and one side on either 

side of the boundary.  

   Considering that a surface S has a surface-charge density of (r), the potential at any point 

in space is given by 
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For volume or surface distributions of charge, the potential is everywhere continuous, even 

within the charge distribution. This can be shown from Eq. (2) or from the fact that E is 
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bounded, even though discontinuous across a surface distribution of charge. However, the 

potential is no longer continuous with point or line charges, or dipole layers.  

A dipole layer can be imagined as being formed by letting the surface S have a 

surface-charge density (r) on it, and another surface S, lying close to S, have an equal and 

opposite surface-charge density on it at neighboring points, as shown in Fig. 1.5. The 

dipole-layer distribution of strength D(r) is formed by letting S approach infinitesimally close 

to S while the surface-charge density (r) become infinite in such a manner that the product 

of (r) and the local separation d(r) of S and S approached the limit D(r): 

)()()(lim
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 .            (3.3) 

The direction of the dipole moment of the layer is normal to the surface S and in the direction 

going from negative to positive charge.  

    With n, the unit normal to the surface S, directed away from S, as shown in Fig. 1.6, the 

potential due to the two close surfaces is  
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With a Taylor series expansion in three dimensions, the term 
1 dnrr  can be 

expressed as 
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Using Eq. (5) and taking 0d , the potential becomes 
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The geometrical interpretation for Eq. (6) is given by 
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where d is the element of solid angle subtended at the observation point by the area element 

da, as indicated in Fig. 1.7.  
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Note that if  is an acute angle, d has a positive sign. Then the potential can be written as 

   dD
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 .           (3.8) 

For a constant surface-dipole-moment density D, the potential is just the product of the 

moment divided by 4o and the solid angle subtended at the observation point by the surface, 

regardless of its shape.  

There is a discontinuity in potential in crossing a double layer. This can be seen by 

letting the observation point come infinitesimally close to the double layer. The double layer 

is now imagined to consist of two parts, one being a small disc directly under the observation 

point. The disc is sufficiently small that it is sensibly flat and has constant 

surface-dipole-moment density D. Evidently the total potential can be obtained by linear 

superposition of the potential of the disc and that of the remainder. From Eq. (3.8) it is clear 

that the potential of the disc alone has a discontinuity of D/o in crossing from the inner to the 

outer side, being D/2o on the inner side and D/2o on the outer. The potential of the 

remainder alone, with its hole where the disc fits in, is continuous across the plane of the hole. 

As a result, the total potential jump in crossing the surface is 

oD /12   .            (3.9) 

4. The energy of a charge distribution 

The potential energy of a point charge q in a scalar potential  is the product of both, 

 qW . The potential energy of a number of point charges can be calculated in the following 

way. It can be imagined that the charges qi are infinitely far from each other to calculate the 

work required to bring them from infinitely to a certain separation ri. Now, the charge q1 is 

shifted from infinity to r1. Since the space is still field-free, no work has to be done. However, 

the charge q1 causes a potential 
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One has to do work against this potential to bring the charge q2 from infinity to r2. The work 
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is given by 

 )( 2122 r qW  .             (4.2) 

For the charge q3 one now has to expand work against the potentials )(1 r  and )(2 r : 

  )()( 323133 rr  qW  ,           (4.3) 

where )(2 r  is given by 
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For other charges everything proceeds correspondingly. For the transport of the charge qn, one 

has to spend the work 
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The total potential energy is given by the sum of all nW : 
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where )( nk r  is given by 
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Substituting Eq. (7) into Eq. (6), the total energy can be expressed as 
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where the terms kn   need to be omitted.  

For a continuous charge distribution, the point charge qn is replaced by the charge element 

rd 3)(r , and the summation becomes an integration 
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Note that an important difference between the sum in Eq. (4.8) and the integral in Eq. (4.9) is 

that the integration extends over the point rr  , so that equation (4.9) contains 

automatically self-energy parts which become infinitely large for point charge. An detailed 

description will be given in the following. Since the potential of a charge distribution is given 

by 
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Eq. (9) can be written in the form 

  
V
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Now the interaction energy can be in terms of an integral over the field intensity. The charge 

density satisfies the Poisson equation 

 o /)()(2 rr   .            (4.12) 

 Substituting the charge density in Eq. (11) with Eq. (12), we obtain 
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Using the identity 

    22   ,          (4.14) 

Eq. (13) can be rewritten as 
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The second volume integral can be converted to a surface integral by Gauss theorem: 
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This integral vanishes because approaching to the infinity we have r/1~ , 2/1~ r , so 

that the integrand with 3/1 r  tends more rapidly to zero than the area element 2~ ra  tends 

to infinity. Using )()( rrE  , the total energy in Eq. (15) can be expressed as 
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This leads naturally to the identification of the integrand as an energy density w: 
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Chapter Three: Boundary Value Problems in Electrostatics (I) 

1. Green’s Theorem and Green function 

When electrostatic problems involved localized discrete or continuous distributions of charge 

with no boundary surfaces, the most convenient and straightforward solution to any problem 

is given by 
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There would be no need of the Poisson or Laplace equation. However, many of the problems 

of electrostatics involve finite regions of space, with or without charge inside, and with 

prescribed boundary conditions on the bounding surfaces. To deal with the boundary 

conditions it is necessary to exploit the mathematical method based on Green’s theorem 

(George Green 1824). Two Green’s identities follow as simple applications of the divergence 

theorem. For any well-behaved vector field A defined in the volume V bounded by the closed 

surface S, the divergence theorem is expressed as 

   
V S

adrd nAA 3            (1.1) 

where n is the outwardly directed unit vector normal to the surface and da be an element of 

surface area. Considering the vector filed A to be associated with two arbitrary scalar fields 

and  as  A , we have 

     2A         (1.2) 

and 

 
n

  nnA   ,         (1.3) 

where /n is the normal derivative at the surface S (directed outward from inside the volume 

V). Substituting Eqs. (2) and (3) into Eq. (1) leads to Green’s first identity: 
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When Eq. (4) was written again with  anf  interchanged, and then subtract it from Eq. (4), 

the terms    cancel. Green’s second identity or Green’s theorem can be obtained as 
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  With the help of the second Green’s theorem we can calculate the solution of the Poisson 

equation or the Laplace equation within a certain bounded volume with known Dirichlet or 

Neumann boundary conditions by means of so-called Green functions. The Green function is 

generally obtained from  

 )(4)(2 rrrr  ,G            (1.6) 

with  
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where F has to fulfill the Laplace equation 0)(2  rr,F . Note that although the function 

rr /1  obeys Poisson equation in Eq. (6), it does not satisfy Dirichlet or Neumann 

boundary conditions, except if the surface lies at infinity. For the Green function )( rr ,G  the 

boundary conditions can be taken into account via the functions ),( rr F .  

    Considering the Poisson equation o /)()(2 rr  , we can set )( rr  ,G  and 

)(r  in Eq. (5) and use Eq. (6) to obtain 
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After some algebra, Eq. (8) can be given by 
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.  (1.9) 

One or the other of surface integrals in Eq. (9) can be eliminated by appropriately choosing 

the boundary condition for )( rr ,G . For Dirichlet boundary conditions, we demand: 

 0)( rr,GD  for r on S.            (1.10) 

Then Eq. (9) becomes 
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For Neumann boundary conditions the obvious ansatz 0/),(  nGN rr  leads to a wrong 

result since it does not fulfill the requirement of Gauss’s law for a unit charge: 

4
),( 




 S

N ad
n

G rr
 .           (1.12) 

Therefore, the simple ansatz is  
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 rr

              (1.13) 

if S is the entire surface. Then we obtain 

  



S NV N
o

S
ad

n
GrdG

)(
),(

4
1)(),(

4
1)( 3 r

rrrrrr





,  (1.14) 

where 
S

  is the average value of the potential at the surface. This average value can be 

absorbed always into the additive constant in which the potential is arbitrary. The physical 

meaning of ),( rr F  is that the function ),( rr F  denotes the potential of a charge 

distribution outside the volume V so that, together with the potential rr /1  of the point 

charge at the point r, the Green function can just satisfy the boundary condition in Eq. (1.10) 

or Eq. (1.13). It is clear that the external charge distribution depends on the point charge in the 

volume whose potential or the normal derivative of whose potential it has to compensate at 

the boundary surface. This means that ),( rr F  depends on the parameter r, which gives the 

position of the point charge distribution in the volume. The method of images is developed 

based on this requirement.  

 

2. Expansion of arbitrary functions in terms of a complete set of functions 

Expansion of arbitrary functions in terms of a complete set of orthogonal functions plays an 

important role in mathematical physics. Considering a finite or infinite system of real or 

complex functions U1(x), U2(x), U3(x),…. ,Un(x) in the interval [a,b], the system of functions 

is called to be orthogonal if the functions satisfy the orthogonality relation: 

 mnn

b

a nm sdxxUxU ,)()(    ,           (2.1) 

where )(xU m
  is the function complex conjugate to )(xUm . If 1ns  for n=1,2,…, then the 

system is said to be normalized (orthonormal system). In terms of the norm, any function U(x) 

different from the null function can be normalized by   

 

 


b

a
dxxUxU

xU
xU

)()(

)(
)(  .          (2.2) 

It is obvious that the orthonormality for the system of functions is analogous to the 

orthonormal vectors e  with   ,ee . All orthonormal sets of functions normally 
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occurring in mathematical physics have been proven to be complete. In terms of the 

orthonormal system of functions, an arbitrary function f(x), square integrable on the interval 

[a, b], can be expanded as 

 





1

)()(
n

nn xUaxf              (2.3) 

with 

   
b

a nn dxxfxUa )()(  ,           (2.4)      

where the orthonormality condition has been used.  

    The expansion in Eq. (2.3) can be rewritten with the explicit form in Eq. (2.4) for the 

coefficients an: 
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 .        (2.5) 

This result implies that 
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   .          (2.6) 

This is the so-called completeness or closure relation.  It is analogous to the orthonormality 

condition in Eq. (2.1), except that the roles of the continuous variable x and the discrete 

index n have been interchanged.  

    For an arbitrary function f(x,y) with two independent variables in the intervals: ],[ bax  

and ],[ bax , the expansion can be generalize as  
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nmnm yVxUayxf           (2.7) 

with 
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a nmnm dydxyxfyVxUa ),()()( *
,  ,        (2.8) 

where )(xUm  and )(yVn  are orthonormal functions and form a complete set.  

    The most famous orthogonal functions are the sines and cosines, an expansion in terms 

of them being a Fourier series. If the intervals in x is [a/2, a/2], the orthonormal functions 

are 
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cos

2
 , 

where m is a non-negative integer and for m = 0 the cosine function is a/1 . Then arbitrary 

functions in the interval [a/2, a/2] can be represented by 
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where  
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Substituting Eqs. (2.10) and (2.11) into Eq. (2.9), the expansion can be rewritten as 

    )()(
2

cos2)(1)(
1

2/

2/

2/

2/  



 






 



 

m

a

a

a

a
xdxfxx

a
m

a
xdxf

a
xf


 .  (2.12) 

Using  
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Eq. (12) can be expressed as 
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Consequently the orthonormal set of complex exponentials  

 )/2(1
)( axmi

m e
a

xU               (2.15) 

can be defined to expand an arbitrary function f(x) as 
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Note that the )( xx   function with x in [a/2, a/2] can be given by 
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Using 1m  and introducing amkm /2  with the limit a , Eq. (2.18) can be 

converted to an integral with the continuous parameter k: 
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3. Separation of variables; Laplace equation in rectangular coordinates 

First of all, we consider the two-dimensional (2D) problem, where the potential  is assumed 

to be independent of z. As shown in Fig. (a), the potential is specified on the four sides of the 

rectangle: )()0,( 1 xfx  , )(),( 2 xfbx  , )(),0( 1 ygy  , )(),( 2 ygya  . This problem 

can be regarded as the sum of the two problems as shown in Figs. (b) and (c). The solutions to 

these two problems are denoted as 1 and 2, respectively. In Fig. (b), we have chosen 

01   at 0x  and ax  . In Fig. (c), we have chosen 02   at 0y  and by  . The 

2D Laplace equation in rectangular coordinates is 

 02

2

2

2








yx
 .            (3.1) 

With separation of variables, the potential ),( yx  can be represented by the product of two 

functions, one for each coordinate: 

 )()(),( yYxXyx   .            (3.2) 

Substitution into Eq. (1) and division of the result by Eq. (2) yields 

 0
)(

1
)(

1
2

2

2

2


dy

Yd
yYdx

Xd
xX

,           (3.3) 

where total derivatives have replaced partial derivatives, since each term involves a function 

of one variable only. If Eq. (3.3) is to hold for arbitrary values of the independent coordinates, 

each of the two terms must be separately constant. For the boundary conditions shown in Fig. 

(b), we generally set 
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2
2

2

2
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1;
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1  

dy
Yd

yYdx
Xd

xX
.         (3.4) 

The solutions of the two ordinary differential equations (3.4) are xie   and ye  . The 

potential 1  can be thus built up from the product solutions: 

 yxi ee  1 .             (3.5) 

The boundary conditions 01   at 0x  and ax   imply that xxX sin)(   with 

an /   and ,3,2,1n . In general, 1  can be the sum of the products and is given by 
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The Fourier coefficients nA  and nB  are determined from the boundary conditions 

)()0,( 1 xfx   and )(),( 2 xfbx  : 
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and  
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From the orthogonality condition, we get: 
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and  
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n dxaxnxf

a
eBeA

0 2
// )/sin()(2   .      (3.10) 

The coefficients nA  and nB  can be determined by solving Eqs. (3.9) and (3.10) 

simultaneously.  

For the boundary conditions shown in Fig. (c), we generally set 
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Yd

yYdx
Xd

xX
.         (3.11) 

The solutions of the two ordinary differential equations (3.11) are xe   and yie  . The 

boundary conditions 02   at 0y  and by   imply that yyY sin)(   with 

bm /   and ,3,2,1m .  In the place of Eq. (6), 2  can be given by 

  




 
1

//
2 )/sin(),(

m

bxm
m

bxm
m bymeDeCyx   .     (3.12) 

The Fourier coefficients mC  and mD  are determined from the boundary conditions 

)(),0( 1 ygy   and )(),( 2 ygya  : 
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and  
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From the orthogonality condition, we get: 
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DC
0 1 )/sin()(2            (3.15) 

and  

  bbam
m

bam
m dybymyg

b
eDeC

0 2
// )/sin()(2   .      (3.16) 

The coefficients mC  and mD  can be determined by solving Eqs. (3.15) and (3.16) 

simultaneously. 
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Example 

    Let us consider a simple case with b and the boundary conditions: Vx  )0,( ,  

0)0,(  y , 0),(  ay . Find the potential in terms of Fourier series and closed form.  

Solution 

As discussed above, only the coefficients nA  survive and can be solved as 
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VdxaxnV

a
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n 
  . 

Consequently, the potential is therefore determined to be 

  
odd 

/ )/sin(14),(
n

ayn axne
n

Vyx 


 .        (3.17) 

There are many Fourier series that can be summed to give a result in closed form. The series 

in Eq. (3.17) is one of them. The derivation is as follows. With )Im(sin  ie , where Im 

stands for the imaginary part, Eq. (3.17) can be written as  
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           (3.18) 

with  

))(/( yixaieZ    .             (3.19) 

Using the identities: 
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Eq. (3.18) can be written as 
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 .          (3.20) 

Note that the imaginary part of a logarithm is equal to the phase of its argument. Accordingly, 

we can use  
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to obtain 
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4. Expansion of Green functions in rectangular coordinates 

A Green function for a Dirichlet potential problem in 2D rectangular coordinates satisfies 

the equation 

 )()(4),;,(2

2

2

2

yyxxyxyxG
yx













        (4.1) 

in a rectangular 2D region, ax 0  and by 0 . The completeness relation can be used 

to represent the function )( xx  : 
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In terms of the same basis in the x-coordinate, the Green function can be expanded as 
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Substitution of Eqs. (4.2) and (4.3) into Eq. (4.1) leads to 
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 .        (4.4) 

The Green function in the y-component is seen to satisfy the homogeneous equation for 

yy  . Thus it can be written as 
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The symmetry in y and y requires that the coefficients )( yA   and )( yB   be such that 

),( yygn   can be written 
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 ,      (4.6) 

where y  ( y ) is the smaller (larger) of y and y. To determine the constant C we must 

consider the effect of the delta function in Eq. (4.4). If we integrate both side of Eq. (4.4) over 

the interval from  yy  to  yy , where  is very small, we obtain 
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With Eq. (4.6), we have 
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and 
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 .    (4.9) 

Substituting Eqs. (4.8) and (4.9) into Eq. (4.7), we find 
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Combination of Eqs. (4.10), (4.6) and (4.3) yields the expansion of the Green function for a 

2D rectangular region bounded by ax 0  and by 0 : 
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Example    

With Eq. (4.11), let us consider the problem that all boundaries of the rectangular region hold 

at zero potential and there is a uniform charge density of strength o over the entire region.  

<Solution> 

In terms of the Green function, the potential is given by 
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The integration in the x variable can be in terms of  
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On the other hand, the integration in the y variable can be in terms of 
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The integrated results in the right-hand side of Eq. (14) are given by   
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Substituting Eqs. (4.15) and (4.16) into (4.14), we can obtain 
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So the final result is given by 
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5. Eigenfunction Expansions for Green functions 

Another technique for obtaining expansions of Green functions is the use of 

eigenfunctions for some related problem. To represent the so-called eigenfunctions, we 

consider a differential equation of the form 

   0)()()(2  rrr  f  .          (5.1) 

If the solutions )(r  are required to satisfy homogeneous boundary conditions on the 

surface S of the volume of interest V, then Eq. (5.1) will not in general have well-behaved 

solutions, except for certain values of . These values of , denoted by n, are called 

eigenvalues (or characteristic values) and the solutions )(rn  are called eigenfunctions. The 

eigenvalue differential equation is written as 

   0)()()(2  rrr nnn f   .          (5.2) 

In general, the totality of eigenfunctions can form a complete orthonormal set.  

Suppose that the equation for the Green function is given by 
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    )(4),()(),(2 rrrrrrr   GfG  ,       (5.3) 

where  is not equal to one of the eigenvalues n of Eq. (5.2). Furthermore, suppose that the 

Green function is to have the same boundary conditions as the eigenfunctions of Eq. (5.2). 

Then the Green function can be expanded in a series of eigenfunctions of the form: 

  
n

nnaG )()(),( rrrr  .            (5.4) 

Substitution into the differential equation for the Green function leads to the result: 

   )(4)()( rrrr  
m

mmma  .        (5.5) 

If we multiply both sides by )(r
n  and integrate over the volume V, the orthogonality 

condition reduces the left-hand side to one term, and we obtain 

  








n

n
na

)(
4)(

r
r  .            (5.6) 

Consequently the eigenfunction expansion of the Green function is given by 
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Specializing the foregoing considerations to the Poisson equation, we place 0)( rf  and 

0  in Eq. (5.1). Consider the Green function for a Dirichlet problem inside a rectangular 

region defined by the ax 0  and by 0 . The expansion is to be made in terms of 

eigenfunctions of the wave equation: 

   0),(22
2  yxk nmnmD   ,           (5.8) 

where the eigenfunctions which vanish on all the boundary sides are  
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The expansion of the Green function is therefore given by 
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As discussed in the previous section, the Green function can be obtained by singling out the y 
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coordinate for special treatment: 






 





 













 





















1

sinsin
)(

sinhsinh
sinh

18

),;,(

n
a

xn

a

xn

a

ybn

a

yn

b
a

nn

yxyxG




.  (5.12) 

If Eqs. (5.11) and (5.12) are to be equal, it must be that the sum over m in Eq. (5.11) is just the 

Fourier series representation on the interval (0, b) of the one-dimensional Green function in y 

in Eq. (5.12): 
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Equation (5.13) can be generally rewritten as 
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Verifying Eq. (5.14) 

From the Fourier representation, verifying Eq. (5.14) is to show the following identity: 
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The integration in the left-hand side of Eq. (5.15) can be explicitly given by 
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The integration can be further evaluated as 
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and 
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.    (5.18) 

Substitution of Eqs. (5.17) and (5.18) into Eq. (5.16) leads to 
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Example 

The expansion of the potential of a unit point charge in rectangular coordinates affords a 

useful example of Green function expansions. A Green function for a Dirichlet potential 

problem in rectangular coordinates satisfies the equation 

 )()()(4),,;,,(2

2

2

2

2

2

zzyyxxzyxzyxG
zyx
















  .   (1) 

The completeness relation can be used to represent the functions )( xx   and )( yy  : 
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In terms of the basis in the x and y coordinates, the Green function can be expanded as 
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Substitution of Eqs. (2), (3), and (4) into Eq. (1) leads to 
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where 222
tyx kkk  . For zz  , the Green function in the z-component is seen to satisfy a 

simple differential equations. When there are no boundary surfaces, ),,( zzkg t   vanishes at 

z . Consequently, ),,( zzkg t  can be written as 
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The symmetry in z and z requires that the coefficients )( tkA  and )( tkB  be such that 

),,( zzkg t   can be written 

    zkzk
tt

tt e ekCzzkg )(),,(  ,         (7) 

where )(  zz  is the smaller (larger) of z and z. To determine the constant C(k) , we consider 

the effect of the delta function in Eq. (5). If we integrate both side of Eq. (5) over the interval 

from  zz  to  zz , where  is very small, we obtain 
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Substituting Eq. (7) into Eq. (8), we can find 
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 tt kkC /2)(   .              (9) 

Consequently, the free space Green function just for the expansion of ||/1 rr  can be 

expressed as 
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where 222
tyx kkk   and )(  zz  is the smaller (larger) of z and z. 

Expanding the free space Green function with the eigenfunctions of the Helmholtz 

equation, it can be shown that 
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where 2222 kkkk zyx  . If Eqs. (10) and (11) are to be equal, it must be that  
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Eq. (12) can be verified by showing the following Fourier transformation: 
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The integration in Eq. (13) can be carried out by expressing as   

      zki

zt

t

z

zkizzkz zkizzk zztzt e
kk

k
dzeedzee 










  22

2
 .     (14) 

 

 

 



1 
 

Chapter Four: Boundary Value Problems in Electrostatics (II) 

1. Separation of variables; Laplace equation in Polar coordinates 

In this section, we consider the two-dimensional (2D) problem in polar coordinates, where the 

potential  is assumed to be independent of z. As shown in Fig. , the potential may be 

specified on the surface of a cylinder of radius b as ),( bs . In terms of the polar 

coordinates ),(  , the Laplace equation in two dimensions is 

 011
2

2
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 .          (1.1) 

Using the separation of variables approach, the potential ),(   can be represented by the 

product of two functions, one for each coordinate: 

 )()(),(  QR  .            (1.2) 

Substitution of Eq. (1.2) into Eq. (1.1) and multiplication by RQ/2  yields 
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where total derivatives have replaced partial derivatives, since each term involves a function 

of one variable only. If Eq. (1.3) is to hold for arbitrary values of the independent coordinates, 

each of the two terms must be separately constant: 
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The solutions of the two ordinary differential equations (1.4) are 
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and 
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When the full azimuthal range is permitted, there is no restriction on  and it is necessary that 

m must be a positive or negative integer or zero to ensure that the potential is single-valued. 

Furthermore, for m = 0, the constant B0 in Eq. (1.6) must vanish for the same reason. Under 

this circumstance, the general solution is therefore of the form, 
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The Fourier coefficients mA , mB , mC  and mD  are determined from the boundary 

conditions. If the origin is included in the volume in which there is no charge, all mC  and 

mD  and 0B  are zero. Only a constant and positive powers of  appear. If the origin is 

excluded, the mC  and mD  and 0B  can be different from zero. In particular, the logarithmic 

term is equivalent to a line charge on the axis with charge density per unit length 

02 Bo  , as is well known.  

 

Example 

Starting with the series solution Eq. (1.7) for the 2D potential problem with the potential 

specified on the surface of a cylinder of radius b, evaluate the coefficients formally, substitute 

them into the series, and sum it to obtain the potential inside the cylinder in the form of 

Poisson’s integral: 
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What modification is necessary if the potential is desired in the region of space bounded by 

the cylinder and infinity? 

<Solution> 

 Since the origin is included, the solution is given by 
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and the boundary condition leads to 
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From the orthogonality condition, we get: 
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Substituting Eqs. (1.11)-(1.13) into Eq. (1.9), we obtain 
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The term in the bracket of the integrand can be derived as 
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Example 

Two halves of a long hollow conducting cylinder of inner radius b are separated by small 

lengthwise gaps on each side, and are kept at different potentials V1 and V2. Show that the 

potential inside is given by 
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where  is measured from a plane parallel to the plane through the gap. 

<Solution> 

The potential on the surface can be expressed as  
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With Eq. (8), we can find 
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2. Expansion of Green functions in polar coordinates 

Example 

(a) Consider the free-space Green function for two-dimensional electrostatics to show that the 

Green function can be written as 

    cos2ln),;,( 22G  

(b) By using separation of variables in polar coordinates to show that the Green functions can 

be expressed as a Fourier series in the azimuthal coordinates,  
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   where the radial Green functions satisfy 
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(c) Considering that ),(  mg  for fixed  is a different linear combination of the solutions 

of the homogeneous radial equation for    and for   , show that the free space 

Green function has the expansion 
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   where )(    is the smaller (larger) of  and .  

(d) Show the identity  
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<Solution>  

(a) The Green function has to obey the following equation 

)(4),( )2(2
2 rrrr  GD . 

Since the Laplace operator is invariant under translations and rotations, we expect the 

existence of a translational-invariant and rotational-invariant solution. Hence, we make the 

ansatz 

  )()()(),( RGGGG  Rrrrr . 

In polar coordinates,    cos222R . The Green function satisfies the 

following equation 
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Making an integration of  for this equation and simplifying, we obtain 
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As a result, the Green function can be written as 

    cos2ln),;,( 22G  . 

(b) A Green function for a Dirichlet potential problem in polar coordinates satisfies the 

equation 
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The completeness relation can be used to represent the function )(   : 
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In terms of the same basis in the -coordinate, the Green function can be expanded as 
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Here we have used the fact that ),(),(   mm gg . Substitution of Eqs. (2) and (3) into 

Eq. (1) leads to 
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(c) The Green function in the -component is seen to satisfy the homogeneous equation for 

  . For 0m , it can be written as 
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For 0m , ),(0  g  can be written as 
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The symmetry in  and  requires that the coefficients mA  and mB  be such that ),(  mg  

can be written 
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where )(    is the smaller (larger) of  and . To determine the constant Cm , we consider 

the effect of the delta function in Eq. (4). If we integrate both side of Eq. (4) for 0m  over 

the interval from    to   , where  is very small, we obtain 
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With Eq. (7), we have 
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Substituting Eqs. (9) and (10) into Eq. (8), we find 
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Following the same procedure, we can obtain 40 C .  Combining all coefficients, the 
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free space Green function has the expansion 
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where )(    is the smaller (larger) of  and . 

(d) The identity can be shown as 
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Here we have used the fact that 
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Example 

(a) Extend the previous example to find the Green function for the interior Dirichlet problem 

of a cylinder of radius b, i. e. 0),(  bgm  . First find the series expansion akin to the 

free-space Green function and then show that it can be written in closed form as  
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(b)  Show that the solution of the Laplace equation with the potential given as ),( bs  on 

the cylinder can be expressed as Poisson’s integral: 
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<Solution> 

(a) In terms of the same basis in the -coordinate, the Green function can be expanded as 



8 
 

























1

)(

1

)(
0

)(

),(
2
1),(

2
1),(

2
1                       

),(
2
1),;,(

m

im
m

m

im
m

m

im
m

egegg

egG


















. (1) 

The Green function in the -component is seen to satisfy the homogeneous equation for 

  . For 0m , it can be written as 
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For 0m , ),(0  g  can be written as 
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The symmetry in  and  requires that the coefficients mA  and mB  be such that ),(  mg  

can be written 
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where )(    is the smaller (larger) of  and . To determine the constant Cm , we consider 

the effect of the delta function: 
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After integrating both side of Eq. (5) for 0m  over the interval from    to 

  , where  is very small, we obtain 
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With Eq. (4), we have 
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Substituting Eqs. (7) and (8) into Eq. (6), we find 
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Following the same procedure, we can obtain 40 C .  Combining all coefficients, the 

free space Green function has the expansion 
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where )(    is the smaller (larger) of  and . Eq. (10) can be rewritten as 
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(b) In terms of the Green function, the solution of the Laplace equation with the potential 

given as ),( bs  on the cylinder is given by 
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Example 

Show that the two-dimensional Green function for Dirichlet boundary conditions for the 

annular region, cb    (concentric cylinders) has the expansion 
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<Solution> 

In terms of the same basis in the -coordinate, the Green function can be expanded as 
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The Green function in the -component is seen to satisfy the homogeneous equation for 

  . For 0m , it can be written as 

  
















 












  for                

for                   

),(

2 c
c

B

bbA

g

m

m
m

m

m

m
m

m

m







  .     (1) 

For 0m , ),(0  g  can be written as 

  




























 for       ln

for       ln

),(

0

0

0

ccB

b
b

A

g






  .       (2) 

The symmetry in  and  requires that the coefficients mA  and mB  be such that ),(  mg  

can be written 
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where )(    is the smaller (larger) of  and . To determine the constant Cm , we consider 

the effect of the delta function: 
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After integrating both side of Eq. (4) for 0m  over the interval from    to 

  , where  is very small, we obtain 
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With Eq. (3), we have 
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Substituting Eqs. (9) and (10) into Eq. (8), we find 
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Following the same procedure, we can obtain )/ln(/40 bcC  . Combining all coefficients, 

the free space Green function has the expansion 
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Example 

Two conducting panes at zero potential meet along the z axis and intersect at an angle . A 

unit line charge parallel to the z axis is located between the planes at position ),(   .  

(a) Show that the completeness relation for the angular functions is 
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(b) Show that )4( o  times the potential in the space between the planes, that is, the 

Dirichlet Green function ),;,(  G , is given by 
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(c) Show that the series can be summed to give a closed form 
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<Solution> 
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In terms of the same basis in the -coordinate, the Green function can be expanded as 
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3. Laplace Equation in Cylindrical Coordinates; Bessel Functions 

The forms of the solutions of Laplace’s equation in circular cylindrical coordinates can be 

given by 

)()()(),,( zZQRz    .            (1) 

Substitution of Eq. (1) into Laplace’s equation and multiplication by RQZ/2  yields 
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where total derivatives have replaced partial derivatives, since each term involves a function 

of one variable only. The solutions can be divided into two categories: 
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and 
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Consider the first case in Eq. (3), the solutions for z and  variables are given by 

  mikz eQezZ   )(      ;   )(   .          (5) 

On the other hand, the radial equation can be put in a standard form by the change of variable 

kx  . The equation becomes 
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This is the Bessel equation and the solutions are called Bessel functions of the order m. With 

the approach of power series solution, the Bessel function can be found to be given by 

 
mj

j

j

m
x

jmj
xJ




 










2

0 2!)1(
)1(

)(           (7) 

 
mj

j

j

m
x

jmj
xJ




  










2

0 2!)1(
)1(

)( .          (8) 

These solutions are called Bessel functions of the first kind of order m . The series 

converge for all finite values of x. If m is not an integer, these two solutions )(xJ m  form a 

pair of linearly independent solutions to the second-order Bessel equation. For the potential to 

be single-valued when the full azimuthal is allowed, m must be an integer. Under this 

circumstance, it is well known that the solutions are linearly dependent. Actually it can be 

shown that 

 )()1()( xJxJ m
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In general, no matter what m is, the second solution is replaced by the Neumann function: 
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The solutions )(xJm  and )(xNm  are called Bessel functions of the second kind.  

The Bessel functions of the third kind, called Hankel functions, are defined as linear 

combinations of )(xJm  and )(xNm : 
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The Hankel functions form a fundamental set of solutions to the Bessel equation, just as do 

)(xJm  and )(xNm . 

   The other solution in the separation of The Laplace equation is given by Eq. (4). The 

function )(zZ  would have been kzsin  or kzcos  and the equation for )(R  would have 

been:  
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With kx  . The equation becomes 
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The solutions of this equation are called modified Bessel functions. It is evident that they are 

just Bessel functions of pure imaginary argument. The usual choices of linearly independent 

solutions are denoted by )(xIm  and )(xKm . They are defined by 
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and are real functions for real x and m. 

 

Generating Function for Bessel Functions 

 Another representation for the Bessel functions is based on the generating function. The 

generating function of the Bessel functions of integral order is given by  
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Using 2/)(sin  ii eei  , the left-hand side of Eq. (1) can be derived as 
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where the binominal expansion has applied to the term  nii ee    in the derivation. 

Changing the index n in Eq. (2) as jnm 2 , the expansion in Eq. (2) can be written as  
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In comparison with Eq. (1), the Bessel function is given by  
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This result is the same as Eq. (7) in the above section. Differentiating Eq. (1) partially with 

respect to , we have 
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Substituting in Eq. (1) and equating the coefficients of like terms of ime , we obtain the result 



15 
 

    













 
m

im
m

m

im
mm

m

im
m

ii emJeJJeJee  
)()()(

2
 )(

2 11 . 

Consequently the first recurrence relation can be expressed as 

)(2)()( 11 


 mmm JmJJ    .            (6) 

Similarly, differentiating Eq. (1) partially with respect to , we have 
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Substituting in Eq. (1) and equating the coefficients of like terms of ime , we obtain the result 
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Consequently the second recurrence relation can be expressed as 

)(2)()( 11  mmm JJJ    .           (8) 

Suppose we consider a set of function )(xv  which satisfies the basic recurrence relations 

(Eqs. (6) and (8)), but with v not necessarily integer and )(xv  not necessarily given by the 

series Eq. (4). Subtracting Eq. (8) from Eq. (6) and dividing by 2 yields 

 0)()()( 1   xxxvxx vvv  ,          (9) 

where the index has been changed as )( vm  . Adding Eq. (6) and Eq. (8) and dividing by 2, 

the result can be rewritten )( vm   as  

 0)()()( 1   xxxvxx vvv  .          (10) 

On differentiating with respect to x, we have 

 0)()()()1()( 11   xxxxvxx vvvv  .       (11) 

Multiplying by x and then subtracting Eq. (10) multiplied by v gives us 

 0)()()1()()()( 1
2

1
22   xxxvxxvxxxx vvvvv  .    (12) 

Now we write Eq. (9) and replace v by v-1: 

 0)()()1()( 11   xxxvxx vvv  .         (13) 

Adding Eqs. (12) and (13) for eliminating )(1 xv  and )(1 xv , we finally get 

   0)()()( 222  xvxxxxx vvv  .         (14) 

This is just Bessel’s equation. Hence any functions, )(xv , that satisfy the recurrence 

relations Eqs. (6) and (8) satisfy Bessel’s equation. In other words, the unknown )(xv  are 

Bessel functions. In particular, we have shown that the functions )(mJ , defined by the 

generating function, satisfy Bessel’s equation. If the argument is k rather than x, Eq. (14) 
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becomes 
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Closure equation and orthogonality 

The generating function in Eq. (1) can be linked to the 2D plane wave:    

       




 
m

mi
m

mkiykxki ekJiee yx  )(cos .        (16) 

From the Fourier transform, we have  
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Combining Eqs. (16) and (17), we have 
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Using the orthonormal property 
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we can obtain 
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Since the Fourier series gives 
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we have 
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Equivalently, we have 
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   .          (23) 

If there is a boundary condition 0)( kaJm  for a finite interval a 0 , then the 

parameter k should be quantized as 

 axk mnmn /  ,               (24) 

where mnx  is the nth zero of mJ . The solutions are expected to be orthogonal. The 
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demonstration starts with the differential equation satisfied by )/( axJ mnm  : 
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Changing the parameter mnx  to nmx  , we find that )/( axJ nmm   satisfies 
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We multiply Eq. (25) by )/( axJ nmm    and Eq. (26) by )/( axJ mnm   and subtract, 

obtaining 
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Integrating from 0  to a , we obtain 
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Upon integrating by parts in the right-hand side of Eq. (28), we have 
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For 0m  the factor  guarantees a zero at the lower limit, 0 . At a , each 

expression on the right-hand side of Eq. (29) vanishes because the parameters mnx  and nmx   

are roots of mJ . Therefore, for nn    
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This gives us orthogonality over the interval [0, a]. The normalization integral may be 

developed by rewriting Eq. (29) as 
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Setting  mnnm xx , and taking the limit 0 , we have 
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With the aid of the recurrence relation Eq. (9), this result can be also written as 
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Example 

Considering the potential in charge-free space between the planes at 0z  and Lz  , the 

potential in cylindrical coordinates is specified to be ),( V  at the plane Lz   and zero at 

the plane 0z . Find the general form of the solution with the Fourier-Bessel integral and 

derive the expression for determining coefficients.   

<Solution> 

In order that ),,( z  be single valued and vanish at 0z ,  

 kzzZeQ mi sinh)(      ;   )(     . 

The radial factor is  

     kBNkAJR mm )(  . 

Since the potential is finite at 0 , the coefficient B needs to be zero. The general form of 

the solution for the space between the planes at 0z  and Lz   is given by 
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If the potential is specified over the whole plane Lz   to be ),( V , the coefficients 
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)(kAm  are determined by 
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Using the orthogonal properties Eqs. (21) and (23), the coefficients )(kAm  can be derived as 

  
  

0

2

0
)(),(

)sinh(2
)(

  


ddekJV
kL

kkA mi
mm  .     (3) 

 

Example  

Consider the specific boundary-value problem in which the cylinder has a radius a and a 

height L, the top and bottom surfaces being at Lz   and 0z . The potential on the side 

and the bottom of the cylinder is zero, while the top has a potential ),( V . Find the 

potential at any point inside the cylinder.  

<Solution> 

The requirement that the potential vanishes at a  means that the parameter k in the radial 

factor   kJR m)(  can take on only those special values: 

 axk mnmn /  ,  (n = 1, 2, 3,…) 

where mnx  are the roots of 0)( mnm xJ . Consequently the general form of the solution is 

given by 
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If the potential is specified over the whole plane Lz   to be ),( V , the coefficients mnA  

are determined by 
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Using the orthogonal properties Eqs. (21) and (23), the coefficients )(kAm  can be derived as 
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Example 

A hollow right circular cylinder of radius b has its axis coincident with z axis and its ends at 

0z  and Lz  . The potential on the end faces is zero, while the potential on the 

cylindrical surface is given as ),( zV  . Find a series solution for the potential anywhere 

inside the cylinder. 
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<Solution> 

In order that ),,( z  be single valued and vanish at 0z  and Lz  ,  
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The radial factor is  
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Since the potential is finite at 0 , the coefficient B needs to be zero. The general form of 

the solution for the space between the planes at 0z  and Lz   is given by 
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If the potential is specified over the whole plane b  to be ),( zV  , the coefficients mnA  

are determined by 
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Using the orthogonal properties, the coefficients mnA  can be derived as 
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Example 

Following the above example, the cylindrical surface is made of two equal half cylinders, one 

at potential V and the other at potential –V, so that 
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V
zV  . 

Find the potential inside the cylinder. Assuming L>>b, consider the potential at 2/Lz   as a 

function of  and .  

<Solution> 

With the boundary condition, the coefficient mnA  is given by  
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The final integration yields 
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As a result, only if both m and n are odd, mnA  can be nonzero. In terms of new indices, 

12  km  and 12  sn , the potential can be expressed as 
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For L>>b, we have 1/ L  and 1/ Lb . Using the asymptotic form 
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Hence the potential at 2/Lz   can be expressed as 
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Using the Fourier series  
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we obtain 
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Using the fact that 
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we can obtain 
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This result is the same as the case discussed in the 2D polar coordinates. 
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Self-adjoint differential equations 

Linear second-order differential equations corresponding to linear second-order differential 

operators are generally given by 

 )()(
)(

)(
)(

)()(ˆ
212

2

0 xuxp
dx

xdu
xp

dx
xud

xpxuL   .       (1) 

The coefficients )(0 xp , )(1 xp , and )(2 xp  are real functions of x and over the region of 

interest, bxa  , the first 2n derivatives of )(xpn  are continuous. Further, )(0 xp  does 

not vanish for bxa  . Now, the zeros of )(xpn  are singular points, and we choose the 

interval [a, b] so that there are no singular points in the interior of the interval.  

    In mathematics, the adjoint operator L̂  corresponding to the operator L̂  is defined as 
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.  (2) 

In comparison of Eqs. (1) and (2), the necessary and sufficient condition that  LL ˆˆ  is that 

 )()( 10 xpxp   .              (3) 

When this condition is satisfied, we have the general form for the self-adjoint operator 

 )()(
)(

)()(ˆ)(ˆ xuxq
dx

xdu
xp

dx
dxuLxuL 



 .        (4) 

Here )(0 xp  is replaced by )(xp  and )(2 xp  by )(xq  to avoid unnecessary subscripts. 

    From separation of variables or directly from a physical problem we have a linear 

second-order differential equation of the form 

 0)()()(ˆ  xuxwxuL   .            (6) 

Here  is a constant and w(x) is a given function. For a given choice of the parameter , a 

function )(xu , which satisfies Eq. (6) and the imposed boundary conditions, is called an 

eigenfunction corresponding to . The constant  is then called an eigenvalue. The boundary 

conditions may take three forms: (a) Cauchy boundary conditions. The value of a function and 

normal derivative specified on the boundary. In electrostatics this would mean , the potential, 

and En the normal components of the electric field. (b) Dirichlet boundary conditions. The 

value of a function specified on the boundary. (c) Neumann boundary conditions. The normal 

derivative (normal gradient) of a function specified on the boundary. Usually the form of the 

differential equation or the boundry conditions on the solutions will guarantee that at the ends 
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of the interval [a,b] the following products will vanish: 
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Here )(xu  and )(xv  are solutions of Eq. (6). Another important case for dealing with a 

periodic physical system is the cyclic boundary condition 
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When )(xu  and )(xv  are solutions of Eq. (6), the Wronskian of )(xu  and )(xv  is equal 

to a constant divided by the coefficient )(xp . Since )(xu  and )(xv  are solutions of Eq. (6), 

we have 
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d           (9) 

and  
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d           (10) 

Eq. (10) times )(xu  subtracting Eq. (9) times )(xv  yields 
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Integrating Eq. (11) for both ends and using integration by parts, we can obtain 
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For modified Bessel function )(xIm  and )(xKm ,it can be found that 

  
x

xKxIW mm
1)(),(   .             (13) 

 

4. Expansion of Green functions in cylindrical coordinates 

The expansion of the potential of a unit point charge in cylindrical coordinates affords a 

useful example of Green function expansions. A Green function for a Dirichlet potential 

problem in cylindrical coordinates satisfies the equation 
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The completeness relation can be used to represent the functions )(    and )( zz  : 
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In terms of the same basis in the  and z coordinates, the Green function can be expanded as 
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Substitution of Eqs. (2)-(4) into Eq. (1) leads to 
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For   , the Green function in the -component is seen to satisfy the modified Bessel 

differential equations. When there are no boundary surfaces, ),,(  kgm  needs to be finite 

at 0  and vanishes at  . Consequently, ),,(  kgm  can be written as 
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The symmetry in  and  requires that the coefficients )(kAm  and )(kBm  be such that 

),,(  kgm  can be written 

  )()(),,(   kKk(k) ICkg mmmm  ,        (7) 

where )(    is the smaller (larger) of  and . To determine the constant Cm , we consider 

the effect of the delta function in Eq. (5). If we integrate both side of Eq. (5) over the interval 

from    to   , where  is very small, we obtain 
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For modified Bessel function )(xIm  and )(xKm , it has been shown that 
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1)(),(   .            (9) 

Substituting Eq. (7) into Eq. (8) and using Eq. (9), we can find 

  4mC  .             (10) 

Combining all coefficients, the free space Green function just for the expansion of 

||/1 rr  therefore becomes 
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where )(    is the smaller (larger) of  and . This can be written entirely in terms of real 

functions as 
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Alternatively, we can use the Bessel functions to represent the functions  /)(    
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In terms of the basis in the  and  coordinates, the Green function can be expanded as 
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Substitution of Eqs. (2), (13), and (14) into Eq. (1) leads to 
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 .        (15) 

For zz  , the Green function in the z-component is seen to satisfy a simple differential 

equations. When there are no boundary surfaces, ),,( zzkg   vanishes at z . 

Consequently, ),,( zzkg  can be written as 
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The symmetry in z and z requires that the coefficients )(kA  and )(kB  be such that 

),,( zzkg   can be written 

    kzkz eC(k) ezzkg ),,(  ,          (17) 

where )(  zz  is the smaller (larger) of z and z. To determine the constant C(k) , we consider 

the effect of the delta function in Eq. (15). If we integrate both side of Eq. (15) over the 

interval from  zz  to  zz , where  is very small, we obtain 
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Substituting Eq. (17) into Eq. (18), we can find 

 kC(k) /2  .              (19) 

Consequently, the free space Green function just for the expansion of ||/1 rr  can be 

expressed as 

  




  




m
mm

imzzk dkkJkJee
0

)( )()(
||

1 

rr
.       (20) 



26 
 

where )(  zz  is the smaller (larger) of z and z. 

    Next we consider the Dirichlet Green function for the unbounded space between the 

planes at 0z  and Lz  . One form of the Green function can be found by using the 

completeness relation to represent the functions )(    and )( zz  : 
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In terms of the same basis in the  and z coordinates, the Green function can be expanded as 
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Substitution of Eqs. (21)-(23) into Eq. (1) leads to 
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For   , the Green function in the -component is seen to satisfy the modified Bessel 

differential equations. When there are no boundary surfaces in the lateral direction, 

),(  mng  needs to be finite at 0  and vanishes at 0 . Consequently, ),(  mng  

can be written as 
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The symmetry in  and  requires that the coefficients mnA  and mnB  be such that 

),(  mng  can be written 
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where )(    is the smaller (larger) of  and . To determine the constant Cmn , we 

consider the effect of the delta function in Eq. (24). If we integrate both side of Eq. (24) over 

the interval from    to   , where  is very small, we obtain 
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For modified Bessel function )(xIm  and )(xKm , it has been shown that 
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Substituting Eq. (26) into Eq. (27) and using Eq. (28), we can find 

  4mnC  .             (29) 

Combining all coefficients, the Dirichlet Green function for the unbounded space between the 

planes at 0z  and Lz   therefore becomes 
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where )(    is the smaller (larger) of  and . 

    An alternative form of the Dirichlet Green function for the unbounded space between the 

planes at 0z  and Lz   can be found by using the completeness relation to represent the 

functions )(    and  /)(  : 
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In terms of the basis in the  and  coordinates, the Green function can be expanded as 
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Substitution of Eqs. (31)-(33) into Eq. (1) leads to 
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For zz  , the Green function in the z-component is seen to satisfy a simple differential 

equations. Since there are two boundary surfaces at 0z  and Lz  , ),,( zzkg   vanishes 

at these two surfaces. Consequently, ),,( zzkg  can be written as 
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The symmetry in z and z requires that the coefficients )(kA  and )(kB  be such that 

),,( zzkg   can be written 

  )](sinh[)sinh()(),,(   zLkkz kCzzkg  ,       (36) 

where )(  zz  is the smaller (larger) of z and z. To determine the constant C(k) , we consider 

the effect of the delta function in Eq. (34). If we integrate both side of Eq. (34) over the 

interval from  zz  to  zz , where  is very small, we obtain 
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Substituting Eq. (36) into Eq. (37), we can find 

  )sinh(/4 kLkC(k)   .             (38) 

Consequently, the Dirichlet Green function for the unbounded space between the planes at 

0z  and Lz   can be expressed as 
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where )(  zz  is the smaller (larger) of z and z. 

 

Example (Jackson Prob. 3.18) 

Considering the potential in charge-free space between the planes at 0z  and Lz  , the 

potential at the plane Lz   is specified to be a fixed potential V inside a circle of radius a 

and zero outside the circle.  The other plane at 0z  is grounded.  Find the potential 

between the planes in cylindrical coordinates.   

<Solution> 

The general form of the solution for the space between the planes at 0z  and Lz   is 

given by 
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Due to the symmetry, only the term with 0m  survives, so 
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Since the potential at the plane Lz   is specified to be a fixed potential V inside a circle of 

radius a and zero outside the circle, using the orthogonal properties Eqs. (21) and (23), the 

coefficient )(0 kA  is given by 
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Using the property 
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we have 
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Therefore, 
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and 
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Another method for finding the solution is based on the Green function. The Green function is 

given by 
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In terms of the Green function, the potential is given by 
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Due to the symmetry, only the term with 0m  survives, so 
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Example (Jackson Prob. 3.19) 

Consider a point charge q between two infinite parallel conducting planes held at zero 

potential. The planes are located at 0z  and Lz   in a cylindrical coordinate system with 

the charge on the z axis at ozz   (a) Using Green’s reciprocation theorem and the above 

example, show that the amount of induced charge on the plate at Lz   inside a circle of 

radius a whose center is on the z axis is given by 

 ),0()( oL z
V
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aQ   . 

(b) Show that the induced charge density on the upper plate can be written as 
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<Solution> 

The Green’s reciprocation theorem is stated as: If  is the potential due to a volume-charge 

density  within a volume V and a surface-charge density  on the conducting surface S 

bounding the volume V, while ʹ is the potential due to another charge distribution ʹ and ʹ, 

then 

  
SVSV

davddavd   . 
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The Green’s second identity or Green’s theorem is given by 
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Assume the two Poisson eqautions to be given by 
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Based on the boundary conditions, we have 
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Therefore, assigning   and   into the Green’s second identity leads to 
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Applying the Green’s reciprocation theorem to the case (a), we have 
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(b) The potential due to the point charge q is given by 

  





 

m
mm

im

o

dk
kL

zLkkz
kJkJe

q
zz

0

)(

)sinh(
)](sinh[)sinh(

)()(
2

),,;,,( 


  . 

For the location ),0,0(),,( ozz   , the potential is then given by 
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The induced charge density on the upper plate is given by 
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As a result, the total induced charge on the upper plate is given by 
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Note that 
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Now we consider the Dirichlet Green function for a grounded cylindrical box defined by 

the surfaces 0z , Lz  , and a . One form of the Green function can be found by 

using the completeness relation to represent the functions )(    and )( zz  : 
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In terms of the same basis in the  and z coordinates, the Green function can be expanded as 
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Substitution of Eqs. (40)-(42) into Eq. (1) leads to 
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For   , the Green function in the -component is seen to satisfy the modified Bessel 

differential equations. When there is a boundary surface in the lateral direction a , 

),(  mng  needs to be finite at 0  and vanishes at a . Consequently, ),(  mng  can 

be written as 
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The symmetry in  and  requires that the coefficients mnA  and mnB  be such that 

),(  mng  can be written 
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where )(    is the smaller (larger) of  and . To determine the constant Cmn , we 

consider the effect of the delta function in Eq. (43). If we integrate both side of Eq. (43) over 

the interval from    to   , where  is very small, we obtain 
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Substituting Eq. (45) into Eq. (46) yeilds 
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Here we have used the property that  
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Consequently, we obtain 
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Combining all coefficients, the Dirichlet Green function for the unbounded space between the 

planes at 0z  and Lz   therefore becomes 
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where )(    is the smaller (larger) of  and . 

    An alternative form of the Dirichlet Green function for a grounded cylindrical box 

defined by the surfaces 0z , Lz  , and a  can be found by using the completeness 

relation to represent the functions )(    and  /)(  : 
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In terms of the basis in the  and  coordinates, the Green function can be expanded as 
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Substitution of Eqs. (31)-(33) into Eq. (1) leads to 
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For zz  , the Green function in the z-component is seen to satisfy a simple differential 

equations. Since there are two boundary surfaces at 0z  and Lz  , ),( zzgms   vanishes 

at these two surfaces. Consequently, ),( zzgms  can be written as 
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The symmetry in z and z requires that the coefficients msA  and msB  be such that ),( zzgms   

can be written 
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where )(  zz  is the smaller (larger) of z and z. To determine the constant Cms , we consider 

the effect of the delta function in Eq. (54). If we integrate both side of Eq. (54) over the 

interval from  zz  to  zz , where  is very small, we obtain 

 


4),(),( 



 



 

 z
ms

z
ms zzg

dz
dzzg

dz
d  .        (57) 

Substituting Eq. (56) into Eq. (57), we can find 
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Consequently, the Dirichlet Green function for the unbounded space between the planes at 

0z  and Lz   can be expressed as 
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where )(  zz  is the smaller (larger) of z and z. 

Finally, we use the eigenfunction expansion to find the form of the Dirichlet Green 

function for a grounded cylindrical box defined by the surfaces 0z , Lz  , and a . 

Using the completeness relation, the functions )(   , )( zz   and  /)(   can 

be expressed as 
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In terms of the basis in the  , z and  coordinates, the Green function can be expanded as 
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Substitution of Eqs. (60)-(63) into Eq. (1) leads to 
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Consequently,  
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Substituting Eq. (65) into Eq. (63) yields 
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Making a comparison between Eq. (50) and Eq. (66), we can obtain  
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On the other hand, making a comparison between Eq. (59) and Eq. (66) can yield 
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5. Electrostatics in Spherical Coordinates 

In spherical coordinates   and ,,r , the Laplace equation can be written in the form 
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Since Eq. (1) is a sum of radial part and an angular part, the solution )(r
  can be expressed 

as the product of a radial part and an angular part, 
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Substituting Eq. (2) into Eq. (1) yields 
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Multiplying Eq. (3) by UPQr /2  can result in 
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If Eq. (4) is to hold for arbitrary values of the independent coordinates, each of the terms must 

be separately constant: 
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The solutions of the first two ordinary differential equations in (5) are 
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In terms of cosx , the  equation for P() is usually expressed as 
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This equation is called the generalized Legendre equation and its solutions are the associated 

Legendre functions. For the case of 0m , Eq. (7) is the ordinary Legendre differential 

equation 
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Legendre Functions 

The Legendre polynomial Pl(x) is defined as the coefficient of the nth power in the generating 

function g(t, x) as 
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With Eq. (1), the electrostatic potential at r for a unit charge at r is given by 
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where )(  rr  is the smaller (larger) of r and r and  is the angle between vectors r and r, 

explicitly, )cos(sinsincoscoscos    . Using the binomial theorem, the 

generating function can be expanded as 
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The first three Legendre polynomials are then given by 
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With Eqs. (1) and (3), we can set 0x  to obtain 

    
!)!2(

!)!12(
1

)!(2
)!2(

1)0(
222 n

n
n
n

P n

n

n
n

           (4) 

and 0)0(12 nP . Furthermore, it can be shown that 1)1( nP  and n
nP )1()1(  . The 
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binomial expansion of the ltxt )2( 2  factor in Eq. (3) yields the double series 
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Rearranging the order of summation, Eq. (5) becomes 
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With tl independent of the index k. Note that [l/2] = l/2 for l even, (l1)/2 for l odd. Now, 

equating two power series in Eq. (1) and Eq. (6) term by term, we have 
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Hence, for l even, Pl has only even powers of x and even parity, and odd powers and odd 

parity for odd l. 

 

Recurrence relations and special properties 

Differentiating Eq. (1) with respect to t yields 

 
  





 




0

12/32 )()21)((
,

l

l
l txPltxttx

t
xtg

 .       (8) 

Substituting Eq. (1) into this and rearranging terms, we obtain 
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The left-hand side is a power series in t. Using distinctive summation indices, we have 
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Since the power series vanishes for all value of t, we can find 
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Equation (11) can be used to obtain an identity  
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Now differentiating Eq. (1) with respect to x yields 
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Substituting Eq. (1) into this and rearranging terms, we obtain 
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The left-hand side is a power series in t. Using distinctive summation indices, we have 

   0)()()(2)(
0

2

0

1

0

 












 l

l
l

l

l
ll

l

l
l txPtxPxPxtxP .      (15) 

Since the power series vanishes for all value of t, we can find 
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    A more useful relation can be found by differentiating Eq. (11) with respect to x: 
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With Eqs. (16) and (17), we can cancel )(xPl  term to obtain 
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From Eqs. (16) and (18), numerous additional equations can be developed, including 
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Using Eq. (19) and the result by replacing 1l  with l in Eq. (20), the term with )(1 xPl  can 

be eliminated to lead to 
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Differentiating Eq. (21) with respect to x yields 
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Using Eq. (19) to replace the term  )()( 1 xPxPx ll   with )()1( xPl l , then Eq. (22) can be 

expressed as  

  0)()1()()1( 2  xPllxPx ll  .           (23) 

Equation (23) is Legendre’s differential equation. In other words, the polynomials )(xPl  

generated by the expansion of 2/12 )21(  txt  satisfy Legendre’s equation which, of course, 

is why they are called Legendre polynomials. In terms of cosx , we encounter 

Legendre’s equation expressed in terms of differentiation with respect to  : 
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Orthogonality 

Repeating the Strum-Liouville analysis, we multiply Eq. (23) by )(xPl   and subtract the 
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corresponding equation with l and l interchanged. Integrating from -1 to 1, we obtain 
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Integrating by parts, the integrated part vanishing because of the factor )1( 2x , we have 
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Then for ll  , it can be found that 
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for ll  , we shall need to evaluate the integral  
1

1

2)( dxxPl . From the recurrence relation 

in Eq. (11),  
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we replace l with l-1 to obtain 
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We multiply Eq. (28) by )()12( 1 xPl l  and subtract Eq. (29) multiplied by )()12( xPl l  to 

obtain 
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Integrating Eq. (30) from -1 to 1 and using the orthogonality in Eq. (27), we obtain 
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    In addition to orthogonality, the Sturm-Liouville theory shows that the Legendre 

polynomials form a complete set. Therefore, it is able to express a given function )(xf  in 

the form of Legendre series, 

 11,)()(
0






xxPAxf
l

ll  .           (33) 

From the orthogonality relation, the coefficient in the series is given by 
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From Eq. (34) for the coefficient of a Legendre series, and from the fact that the Legendre 

polynomials are odd or even, we see that an odd function will have only odd-indexed 

coefficients that are nonzero, and an even function will have only even-indexed coefficients 

that are nonzero.  

Example 

Let 








10,1

01,1
)(

x

x
xf  . The Legendre series will contain only odd-indexed 

polynomials. Find the coefficients. 

 

<Solution> 

The coefficient is given by 
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As a result, we obtain 
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Boundary-Value Problems with Azimuthal Symmetry 

  From the form of the solution of the Laplace equation in spherical coordinates, the general 
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solution for a problem possessing azimuthal symmetry 0m  is given by 
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Now we consider the problem that the hemisphere defined by ar  , 2/0    has an 

electrostatic potential Vo and the other hemisphere defined by ar  ,  2/  has an 

electrostatic potential -Vo.  

 

The potential at interior points can be expressed as 
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The coefficient lA  can be evaluated by 
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Let 12  nl . The coefficient can be explicitly given by 
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Thus the potential inside the sphere is 
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 .      (5) 

The potential outside the sphere can be found by merely replacing   12/ nar  by   22/ nra . 

Since the solution in Eq. (1) with its coefficients determined by the boundary conditions is a 

unique expansion of the potential, this uniqueness provides a means of obtaining the solution 

of potential problems from the expression of the potential on the symmetry axis. The potential 

on the symmetry axis with rz   can be given by 
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where the value of z is positive. For negative z each term must be multiplied by  l1 . 

Suppose that the potential on the symmetry axis can be evaluated and be expanded in a power 

series of the form in Eq. (6), the solution for the potential at any point in space can be 

obtained by multiplying each power of lr  and )1(  lr  by )(coslP .  

    An important example is the potential due to a total charge q uniformly distributed 

around a circular ring of radius a, located as shown in Fig. , with its axis the z axis and its 

center at bz  .  

 

The potential at a point on the axis of symmetry with rz   can be given by 
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where 222 bac   and )/(tan 1 ba . In terms of Legendre polynomials, Eq. (7) can be 

expanded as 
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where )(  rr  is the smaller (larger) of r and c. The potential at any point in space is now 

obtained by multiplying each term of these series by )(coslP : 
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When the ring is in the plane of 2/  , i.e. 0b  , the result can be given by 
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where )(  rr  is the smaller (larger) of r and a. 
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Rodrigues’ Formula and Associated Legendre Functions 

From the following expression 
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The upper limit in Eq. (1) can be changed from ]2/[l  to l because the additional terms 

]2/[l +1 to l in the summation contribute nothing. With this change, the expression in Eq. (1) 

can be in terms of the binomial expansion to be given by 
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This is Rodrigues’ formula.  

    When the Laplacian operator is separated in spherical coordinates, one of the separated 

ordinary differential equations is the associated Legendre equation 
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One way of developing the solution of the associated Legendre equation is to start with the 

regular Legendre equation and convert it into the associated Legendre equation by using 

multiple differentiation. We use the Leibnitz’s formula to differentiate the regular Legendre 

equation m times to obtain 
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We take 
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and replace )(xu  by 
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Solving for )(xu  and differentiating, we have 
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Substituting Eqs. (7) and (8) into Eq. (4), we find that the new function )(xv  satisfies the 

differential equation 
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Which is the associated Legendre equation reducing to Legendre’s equation, as it must when 

m is set equal to zero. As a result, the regular solutions are given by 
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Occasionally, we may find the associated Legendre functions defined with an additional factor 

of  m1 . This  m1  seems to be an unnecessary complication at this point. It will be 

included in the definition of the spherical harmonics in the following section.  

    The form in Eq. (10) seems to imply that m must be nonnegative because of 

differentiating a negative number of times not having been defined. Even so, if )(xPl  is 

expressed by Rodrigues’ formula, this limitation on m is relaxed and we may have lml  , 

negative as well as positive values of m being permitted. Furthermore, we can use Leibnitz’z 

differentiation to show that 

 )(
)!(
)!(

)1()( xP
ml
ml

xP m
l

mm
l 

  .            (11) 

To show Eq. (11), we expand    
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Although the sum extends for mlk 0 , the term in the first square parentheses vanishes 

for lk   and the term in the second square parentheses vanishes for lkml  .  Therefore, 

the sum is taken only for lkm  . Then 
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With Eq. (13), Eq. (11) can be clearly obtained. As expected, the associated Legendre 

functions satisfy recurrence relations. Differentiating the equation 
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On the other hand, differentiating the equation 
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Using Eqs. (14) and (15) to eliminate the term 11 /)(  m
l

m dxxPd , we obtain 
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Consequently, we have 
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Repeating the Strum-Liouville analysis, we can show that for ll   
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for ll  , we shall need to evaluate the integral  
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l . From the recurrence relation 

in Eq. (17), we replace l with l-1 to obtain 

 )()12()()1()()( 12 xPxlxPmlxPml m
l

m
l

m
l   .       (19) 

We multiply Eq. (17) by )()12( 1 xPl m
l  and subtract Eq. (19) multiplied by )()12( xPl m

l  to 
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Integrating Eq. (30) from -1 to 1 and using the orthogonality in Eq. (18), we obtain 

       






1

1

2

1

1

1

2
)(

)(

)(

)12(

)12(
)( dxxP

ml

ml

l

l
dxxP m

l
m

l  .        (21) 

Consequently, we have 
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Since  
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we have 
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With this normalization condition, the expression for the spherical harmonics with is given by 
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With Eq. (25), we can show that 
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The normalization and orthogonality conditions are given by 
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On the other hand, the completeness relation is given by 
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6. Expansion of Green Functions in Spherical Coordinates 

 The expansion of the potential of a unit point charge in spherical coordinates provides a 

pedagogical example of Green function expansions. A Green function for a Dirichlet potential 

problem in spherical coordinates satisfies the equation 
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The completeness relation can be used to represent the functions )cos(cos)(   : 
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In terms of the same basis in the  and  coordinates, the Green function can be expanded as 
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Substitution of Eqs. (2) and (3) into Eq. (1) leads to 
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For rr  , the Green function in the r-component is seen to satisfy the radial differential 

equations. Thus it can be written as  
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When there are no boundary surfaces, ),( rrgl   needs to be finite at 0r  and vanish at 

r . Consequently, ),( rrgl   can be written as 
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The symmetry in r and r requires that the coefficients lA  and lB  be such that ),( rrgl   

can be written 
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where )(  rr  is the smaller (larger) of r and r. To determine the constant Cl , we consider the 

effect of the delta function in Eq. (4). If we integrate both side of Eq. (4) over the interval 

from  rr  to  rr , where  is very small, we obtain 
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Substituting Eq. (6) into Eq. (7), we can find 
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Combining all coefficients, the free space Green function just for the expansion of 

||/1 rr  therefore becomes 
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where )(  rr  is the smaller (larger) of r and r. Equation (9) gives the potential in a 

completely factorized form in the coordinates r and r. This is useful in any integration over 

charge densities, etc., where one variable is the variable of integration and the other is the 

coordinate of the observation point. With the generating function of Legendre polynomials, 

we have  
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where )cos(sinsincoscoscos   . Now, equating two power series in Eq. (9) 

and Eq. (10) term by term, we have 
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The result of Eq. (11) is called the addition theorem for spherical harmonics. In other words, 

the addition theorem expresses a Legendre polynomials of order l in the angle  in terms of 

products of the spherical harmonics of the angles  ,  and , .  

    Now we consider a Green function for a Dirichlet potential problem with the boundary 

surfaces to be concentric spheres at ar   and br  . Since the radial Green function must 

vanish at ar   and br  , from Eq. (5) it becomes  
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The symmetry in r and r requires that the coefficients lA  and lB  be such that ),( rrgl   

can be written 
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where )(  rr  is the smaller (larger) of r and r. To determine the constant Cl , we consider the 

effect of the delta function in Eq. (4). If we integrate both side of Eq. (4) over the interval 

from  rr  to  rr , where  is very small, we obtain 
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Substituting Eq. (13) into Eq. (14), we find 
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Combining all coefficients, the Green function for a spherical shell bounded by ar   and 

br   is given by 
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where )(  rr  is the smaller (larger) of r and r. We can take some limits to obtain the Green 

function for the special cases. For b , Eq. (16) can be reduced to be the Green function 

for the “exterior” problem with a sphere of radius a: 
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Using the addition theorem in Eq. (11), Eq. (17) can be expressed as 
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In terms of the generating function for Legendre polynomials, the Green function in Eq. (18) 

can be rewritten as  
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where n is the unit vector for r and n is the unit vector for r. The final expression in Eq. (19) 

implies that the Green function can be expressed as a superposition of the potentials produced 

by the original charge q and the so-called image charge with the magnitude qra )/(  . When 

the original charge is outside the sphere, the position of the image charge must be inside the 

sphere and is given by n)/( 2 ra . It is worthwhile to note that when the charge q is brought 

closer to the sphere, the image charge grows in magnitude and moves out from the center to 

the sphere. When q is just outside the surface of the sphere, the image charge is equal and 

opposite in magnitude and lies just beneath the surface.  
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    The general solution of the Poisson equation with specified values of the potential on the 

boundary surface is given by 
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Using Eq. (19), we have 
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Consequently, the solution of the Laplace equation outside a sphere with the potential 

specified on its surface is given by 
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where d is the element of solid angle at the point ),,(  a  and cos  = 

)cos(sinsincoscos    . 

For 0a , Eq. (16) can be reduced to be the Green function for the “interior” problem 

with a sphere of radius b: 
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Using the addition theorem in Eq. (11), Eq. (23) can be expressed as 
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In terms of the generating function for Legendre polynomials, the Green function in Eq. (24) 

can be rewritten as  

 

nnnn 































 






r
brr

b
rr

r
rb

r
br

r
b

rrrr

b
rr

b
rrbrrrr

rrG

2

222
2

22

2

2

2
2

22

11                         

 

cos2

1
cos2

1                          

cos21

11
cos2

1),,;,,(









   (25) 

where n is the unit vector for r and n is the unit vector for r. Using Eq. (25), we have 
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Consequently, the solution of the Laplace equation inside a sphere with the potential specified 

on its surface is given by 
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Alternatively, we can directly use Eq. (23) to derive 
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Consequently the solution of the Laplace equation inside br   with ),(   V  on the 

surface is given by 
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  Now let us turn to the problems with charge distributed in the volume, so that the volume 

integral in Eq. (20) is involved. It is sufficient to consider problems in which the potential 

vanishes on the boundary surfaces. By linear superposition of a solution of the Laplace 

equation, the general solution can be obtained.  
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Example 

Find the potential for a hollow grounded sphere of radius b with a concentric ring of charge of 

radius a and total charge Q. 

 

<Solution> 

The charge density of the ring can be written with the help of delta functions in angle and 

radius as 
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Substituting Eq. (23) and Eq. (30) into Eq. (20) yields 
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where )(  rr  is the smaller (larger) of r and a, and we have used the fact that only terms with 

0m  will survive because of azimuthal symmetry. Then, using  
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Eq. (31) can be simplified as 
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Using the fact that 0)0(12 nP  and   !)!2/(!)!12(1)0(2 nnP n
n  , Eq. (33) can be written 

as  
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In the limit b , it will be seen that Eq. (34) reduces to the expression for a ring of charge 

in free space. The present result can be obtained alternatively by using that result and the 

images for a sphere. 
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Chapter Five: Multipoles and Dielectrics 

1. Multipole Expansions 

If there is a bounded charge distribution vanishing outside a sphere of radius a about the 

origin, then the potential in the external region (without boundary surfaces with boundary 

conditions in finiteness, the Dirichlet surface term vanishes) for ar   is given by  
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The integrals occurring in the sum depend only on the particular charge distribution. They 

describe the outward action of the charge distribution completely. The expressions  

   VdYrq ml
l

lm ),()()( *  r .           (2) 

are called the multipole moments of the charge distribution )(r . In particular, the most 

important lmq  are the monopole moment for 0l , the dipole moment for 1l , the 

quadrupole moment for 2l , the octupole moment for 3l , and the hexadecupole moment 

for 4l . For each l the multipole moments lmq  form a tensor of rank l with 2l+1 

components. To achieve a unique representation the origin of the coordinate system is set at 

the center of gravity of the charge distribution.  

 

Multipole Expansion in Cartesian coordinates 

The expansion of a function )(rf  in a Taylor series about the point 0r  is 
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For the special function  

 
2

33
2

22
2

11 )()()(
11)(

xxxxxx
f







rr
r  ,       (4) 

the first three components for the expansion are given by  
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Therefore, the potential can be expanded as 

 



















 



3

1,
5

2

3

3

6
1

4
1

||
)(

4
1)(

ji
ji

jiji

oo

Q
r

rxx

rr
q

Vd






pr

rr
r

r  .  (8) 

where q is the total charge: 

   Vdq )(r  ,              (9) 

p is the dipole moment: 

   Vdrrp )( ,               (10) 

and jiQ  is the quadrupole tensor: 

    VdrxxQ jijiji  23)(r  .           (11) 

Note that the extra term jir  2)( r  in the integral expression of jiQ  has no physical 

contribution due to the fact that 
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In terms of Cartesian coordinates, we exhibit the first few multipole moments explicitly: 

 qVdq
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Only the moments with 0m  have been given. It can be shown that for a real charge 

density the moments with 0m  are related through 
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, )1(),( ml

m
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Two important remarks need to be made. One remark concerns the relationship between the 

Cartesian multipole moments and the spherical multipole moments. The former are 

2/)2)(1(  ll  in number and for 1l  are more numerous than the )12( l  spherical 

components. The root of the differences lies in the different rotational transformation 

properties of the two types of multipole moments; the Cratesian tensors are reducible, the 

spherical, irreducible. Note that for 2l  we have recognized the difference by defining a 

traceless Cartensian quadrupole moment in Eq. (11).    

The other remark is that the multipole moment coefficients in Eq. (1) generally depend 

on the choice of origin. The values of lmq  for the lowest nonvanishing multipole moment of 

any charge distribution are independent of the choice of origin of the coordinates, but all 

higher multiple moments do in general depend on the location of the origin. 

The electric field components for a given multipole can be expressed most easily in terms 

of spherical coordinates. The negative gradient of Eq. (1) is given by 
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From Eq. (8), the potential for a dipole p at the point or  is given by  

 
 

23 4
1

4
1)(

ooo

o

o rr

np

rr

rrp
r








 .         (21) 

where   oo rrrrn  /  is a unit vector directed from or  to r . The electric field 

resulting from the dipole p at the point or  is then given by 
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Equation (22) is valid at large enough distances away from the dipole. Equation (22) for the 

field at a point close to the dipole needs some modification. Consider a localized charge 

distribution )(r  that gives rise to an electric field )(rE  throughout space. We can evaluate 

the average field by calculating the integral of )(rE  over the volume of a sphere of radius R. 

We start from a general expression to analyze the two extremes shown in Fig., one in which 

the sphere contains all of the charge and the other in which the charge lies external to the 

sphere. 

 

Choosing the origin of coordinates at the center of the sphere, we have the volume integral 

of the electric field, 
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where n is the outwardly directed normal. Substitution of 
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for the potential leads to 
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To perform the angular integration we first note that n can be written in terms of the spherical 

angles (, ) as 

  cossinsincossin kjin   . 

Since the different components of n are linear combinations of ),( lmY  for l=1 only, the 

expression of  
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and orthogonality of the ),( lmY  can be used to eliminate all but the term l=1 in series. 

Thus we have 
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Thus the integral (24) is 

  





Vd

r
rRdV

o
Rr

)(
3

)(
2

2

rnrE 


 ,          (26) 

where )(  rr  is the smaller (larger) of r and R. If the sphere of radius R completely encloses 

the charge density, as indicated in Fig. , then rr   and Rr   in Eq. (26). The volume 

integral of the electric field over the sphere then becomes 

o
Rr

dV
3

)(
p

rE  
,             (27) 

where p is the electric dipole moment of the charge distribution with respect to the center of 

the sphere. Note that this volume integral is independent of the size of the spherical region of 

integration provided all the charge is inside. On the other hand, if the charge is all exterior to 

the sphere of interest, then rr   and Rr   in Eq. (26). The volume integral of the 

electric field over the sphere then becomes 
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Here we have used the fact that from Coulomb’s law the integral can be recognized to be the 

negative of o4 times the electric field at the center of the sphere. In other words, the 

average value of the electric field over a spherical volume containing no charge is the value of 

the field at the center of the sphere. To be consistent with Eq. (27), the electric field for a 

dipole should be modified as 
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2. Interaction of an extended charge distribution with an external field 

The multipole expansion of the potential of a charge distribution can be employed to describe 

the interaction of the charge distribution with an external field. The energy of the charge 

distribution )(r  in an external field )(r  is given by 

   xdW 3)()( rr  .             (1) 

Compared with the formula for the energy derived previously, the factor 1/2 is missed here. It 

was introduced because the interaction energy of two charges appears twice in the integral. 

Now the double-counting is excluded, since the charge generating the field )(r  does not 

belong to the distribution )(r . The external field may be expanded in a Taylor series around 

a suitably chosen origin: 
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Utilizing )()( rrE  , and therefore also 
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the series expansion can be rewritten as 
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To get the quadrupole moments in the last sum, we subtract E2
6
1 r  from each term, 
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This step does not affect the potential because 0 E  for the external field in the 

considered region due to the fact the field-producing charges are lying outside of it. 

Performing the integration, we obtain for the energy 
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This expansion indicates that different multipoles interact with the outer field in a distinct way: 

the total charge is connected with the potential, the dipole with the electric field (i.e., with the 

gradient of the potential), the quadrupole with the derivative of the electric field, etc. 

  The interaction energy between two dipoles p1 and p2 can be obtained directly from Eq. (6) 

by using the dipole field 
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Thus, the mutual potential energy is 

 3

12

1212
21212

))((3
4

1)(
rr

npnppp
rEp




o

W


 .        (8) 

where n is a unit vector in the direction 12 rr   and it is assumed that 12 rr  . The 

dipole-dipole interaction is attractive or repulsive, depending on the orientation of the dipoles. 

The energy reaches its minimum if the dipoles are arranged parallel to each other (along a 

straight line). If np 1  and np 2 , then the antiparallel arrangement is favored 

energetically. In the following figure, various orientations and the corresponding energies are 

illustrated, where 3
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3. The Electric Field Due to a Polarized Dielectric 

Here we use a fairly phenomenological consideration to discuss the electric field arising from 

charges in matter. We consider a dielectric having charges, electric dipoles, quadrupoles, etc. 

distributed throughout the material. If the potential is considered to be formed by the charge 

density )(r   and the dipole moment density )(r P , then the potential at r


 is given by 
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Eq. (1) can be rewritten as  
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Using  

 
rr
r

rr
r

rr
r




























 






 )()(1)(

PP
P  ,        (4) 

the potential in Eq. (3) can be rewritten as 
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The third volume integral can be converted to a surface integral by Gauss theorem: 
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This integral vanishes because approaching to the infinity we have 0)(  nP r


, so that the 

integrand is zero. Considering )()( rr
 E , we have 
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Using )(412 rr
rr













 
  , the divergence of the electric field is given by   
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The presence of the divergence of P in the effective charge density can be understood 

qualitatively. If the polarization is nonuniform there can be a net increase or decrease of 

charge within any small volume, as indicated schematically in Fig. .  
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  The molecules of a dielectric may be classified as either polar or nonpolar. For the case of 

nonpolar molecules in an electric field, the positive charges will move slightly in the direction 

of the field while the negative charges move slightly in the opposite direction, creating a 

polarization of the medium. On the other hand, it the molecules have intrinsic (permanent) 

dipole moments that in the absence of an electric field are randomly oriented, they will 

attempt to align with the electric field, and their non-random alignment will lead to a 

polarization of the medium. In either case, the resulting polarization will be a function of the 

local electric field. The empirical relation is given by 
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Here summation over repeated indices is implied. For isotropic materials, only the diagonal 

terms of the dielectric susceptibility tensor  survive, and Eq. (9) becomes merely a power 

series expansion for the polarization P. Materials exhibiting large spontaneous polarization 

are known as ferroelectrics. In analogy to magnets, ferroelectric objects are known as electrets. 

The best known example of a ferroelectric crystal is BaTiO3. Mechanical distortions of the 

crystal may result in large changes of the polarization, giving rise to piezoelectricity. Similarly, 

changes in temperature give rise to pyroelectricity. A number of crystals have sufficiently 

large second or third order susceptibility that optical radiation traversing the crystal may 

excite a polarization with cos2t or cos3t dependence giving rise to the generation of 

frequency doubled or tripled light. The efficiency of such doubling or tripling would be 

expected to increase linearly for doubling or quadratically for tripling with incident field 

strength.  

In sufficiently small electric fields, the relationship between E and P for isotropic materials 

can be simply given by 
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 EP oe  ,               (10) 

where the constant e  is called the linear dielectric susceptibility of the dielectric. The ratio 

between the induced molecular dipole and Eo , the polarizing field, is known as the 

polarizability mol  

Ep omol .                (11) 

With the definition of the electric displacement D, we have 

PED  o  .               (12) 

Then, Eq. (9) becomes 

 D  .               (13) 

The dipoles of the medium are not a source for D, only the so-called free charges act as 

sources. Using Eq. (10), we have  

 EEPED   )1( eoo  .           (14) 

The constant e is called the permittivity of the dielectric. The dielectric constant is defined as 

 e
o



  1  .              (15) 

In general, since it takes time for dipoles to response to the applied field, all three constants 

e , , and  are frequency dependent. 

    Using the divergence theorem, the differential formulation for the dielectric displacement 

can be transformed into the integral form: 

QdardD
SV

  nD3  .           (16) 

On the other hand, the equation 0 E  can be transformed with the Stokes theorem into 

the integral form: 

 0)(   CS
dda lEnE  .           (17) 

The integral forms in Eqs. (16) and (17) can be used directly to deduce the relationship of 

various normal and tangential components of the fields on either side of a surface between 

different media. Figure shows an appropriate geometrical arrangement. An infinitesimal 

Gaussian pillbox straddles the boundary surface between two media with different 

electromagnetic properties. Similarly, the infinitesimal contour C has its long arms on either 

side of the boundary and is oriented so that the normal to its spanning surface is tangent to the 
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interface.     

 

 

We first apply the integral statement in Eq. (16) to the volume of the pillbox. In the limit 

of a very shallow pillbox, the side surface does not contribute to the integrals on the right in 

Eq. (16). Only the top and bottom surfaces contribute. If the top and the bottom are parallel, 

tangent to the surface, and of area a, then Eq. (16) becomes 

  aada
S

 2112 nDDnD  .         (18) 

where 21n  is a unit vector normal to the surface, directed from region 1 to region 2, and  is 

the macroscopic surface-charge density on the boundary surface. Thus the normal components 

of D on either side of the boundary surface are related according to 

   2112 nDD .              (19) 

In an analogous manner the infinitesimal Stokesian loop can be used to determine the 

discontinuities of the tangential components of E. If the short arms of the contour C in Fig. 

are of negligible length and each long arm is parallel to the surface and has length l, then the 

right-hand integral of Eq. (17) is 

 0)()( 1221  ld
C

EEntlE  .          (20) 

where t is a unit vector tangential to the surface. The tangential components of E on either 

side of the boundary are therefore related by 

 0)( 2112  nEE  .             (21) 
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4. Boundary-Value Problems with Dielectrics 

The methods of earlier sections for the solution of electrostatic boundary-value problems can 

readily be extended to handle the presence of dielectrics. Here a few examples of the various 

techniques applied to dielectric media are treated.  

Example 

Consider a point charge q embedded in a semi-infinite dielectric 1  a distance d away from a 

plane interface that separates the first medium from another semi-infinite dielectric 1 . The 

surface is taken as the plane 0z . Find the potential distribution in both half-space by using 

cylindrical coordinates ),,( z  and derive the polarization surface-charge density at the 

interface. 

 
<Solution> 

The potential is composed of partial solutions for the half-spaces 0z  and 0z  matched 

by continuity conditions at 0z . The conditional equations are 
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         (1) 

The charge lies at (0, 0, d), and the problem is entirely rotationally symmetric about the z-axis; 

therefore, the angle  is need for the solution. Taking a point P1 at (, z) in the right-hand 

half-space, the potential can be calculated by using an image charge q  at (0, 0, d) to 

consider the effect of dielectric 2. The potential of the two point charges in the half-space 1 is 

then given by 
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Considering the charge-free half-space 2, the potential can be calculated by placing a point 



13 
 

charge q   at (0, 0, d) to include the effect of the dielectrics. Then, the potential is given by 
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 .            (3) 

The magnitude of the assumed image charges can be evaluated by using the boundary 

conditions that the tangential component of the electric field intensity and the normal 

component of the dielectric displacement are continuous at the interface. Consequently, we 

have 
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Substituting Eqs. (2) and (3) into Eqs. (4) and (5), we obtain 

 qqq  12 )(   ,              (6) 

 qqq   .               (7) 

With Eqs. (6) and (7), the image charges can be determined as 

 qq
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  ,              (8) 
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  .              (9) 

The polarization surface-charge density can be determined by 

   2112 nPP p .             (10) 

where 21n  is a unit vector normal to the surface, directed from region 1 to region 2. When no 

free charges exist at the interface, Eq. (10) can be conveniently expressed as 

   2112 nEE  op  .             (11) 

This equation manifests that the discontinuity of the electric field intensity at the interface 

arises from the induced polarization surface-charge density. Explicitly, 
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In the limit 12    the dielectric 2  behaves much like a conductor in that the electric 

field inside it becomes very small and the surface-charge density in Eq. (12) approaches the 

value appropriate to a conducting surface, apart from a factor of 1/o . 

Another method for finding the solution is based on the eigenfucntion expansion. First of 

all, remember that expanding the free space Green function with the eigenfunctions of the 

Helmholtz equation, it can be shown that 
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where 2222 kkkk zyx  . We need to find the eigenfunction of the Helmholtz equation 

0)( 22  k  for an initial wave in the region 0z  with the boundary condition the 

same as the present problem, i.e. 
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Since there are no boundaries in the x and y directions, the eigenfucntion, the eigenfunction 

can be expressed as 

 )(),,( )( zezyx ykxki yx   ,            (16) 

with  
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Using the boundary conditions, 
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it can be found that 
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Consequently, the eigenfunction of the present Helmholtz equation is given by 
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where )(zu  is the unit step function. With Eq. (22), the delta source term  )( zz   with 

0z  is given by 
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Example 

A homogeneous sphere of radius a and with permittivity 2  is embedded in a region with 

permittivity 1 . In absence of the sphere, a uniform field zoE aE   is in this region. 

Determine the potential and the density of the polarization charge on the spherical surface. 

 

<Solution>  

Both inside and outside the sphere there are no free charges. Consequently the problem is one 

of solving the Laplace equation with the proper boundary conditions at ar  . From the axial 

symmetry of the geometry we can take the solution to be of the form: 







0

)(cos),(
l

l
l

lin PrAr   , ar              (13) 

and 
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)1( )(cos),(
l

l
l

l
l

lout PrCrBr   , ar           (14) 

From the boundary condition at infinity, cosrEzE oo  , we can find that the only 

non-vanishing lB  is oEB 1 . In addition, 0 ll CA  for all 1l . The other coefficients 
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are determined from the boundary conditions at ar  : 
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When the series in Eqs. (13) and (14) are substituted, the boundary conditions in Eqs. (15) 

and (16) yield 

 3
11

 aCEA o  ,              (17) 

 3
11112 2  aCEA o   .            (18) 

Thus, the coefficients can be found to be 
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The potential is therefore 
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Outside the sphere the potential is equivalent to the applied field oE  plus the field of an 

electric dipole at the origin with dipole moment p oriented in the direction of the applied field: 

 oo Eap 3

21
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2
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  .           (23) 

The dipole moment can be interpreted as the volume integral of the polarization P, which is 

given by 

 oo EP 
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The polarization-surface-charge density is given by 
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  .          (25) 
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When 12   , it can be thought that the polarization-surface-charge density produces an 

internal field directed oppositely to the applied field, so reducing the field inside the sphere to 

be  

 
o

oin 3
P

EE   .              (26) 

 

 

5. Microscopic properties of Matter 

Taking a simple classical harmonic oscillator model for an atom or molecule with spring 

constant 2
om , we can find that the displacement of charge e from its equilibrium at 

frequencies well below the resonant frequency o  is given by  

 2
om

e

Ex   ,               (1) 

where m is the reduced mass of the charge. Consequently the induced dipole moment is 

 2

2

om
ee

Exp   .              (2) 

With the definition of Ep omol  and using Eq. (2), the polarizability mol  is then given by 

 2

2

oo
mol m

e


   .              (3) 
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If there are a set of charge ej with the masses mj and oscillation frequencies j in each 

molecule then the molecular polarizability is 

 
j jj

j

o
mol m

e
2

2

1


  .             (4) 

The susceptibility for gases becomes 22 / oomol mNeN   . Thus for molecular hydrogen 

with its lowest electronic resonance near 16108.1 o  sec-1 ( 100 nm) and 

251069.2 N  m-3 at STP (standard temperature and pressure), we obtain 41064.2  , 

quite close to experimental value. Such good agreement should not be expected for substances 

other than hydrogen and helium; generally a sum over all resonant frequencies is required to 

obtain reasonable agreement. It is worth noting that this value should be fairly good up to and 

above optical frequencies. By contrast, the orientation of polar molecules fails for frequencies 

approaching rotational frequencies of the molecule, typically a few GHz. Thus water has 

80  (it has a strong dependence on temperature, varying from 87 at 0o C to 55 at 100o C ) 

at low frequencies, decreasing to 8.0  at optical frequencies. An exact evaluation for the 

molecular dipole moment should resort to quantum mechanics to calculate the expectation 

value of the dipole moment   i
j

jjf e  || r . 

6. Electrostatic Energy in Dielectric Media 

To understand the stored energy in the electric field, we can think of the final configuration of 

charge as being created by assembling bit by bit the elemental charges, bringing each one in 

from infinitely far away against the action of the then existing electric field. From the energy 

of a system of charges in free space, we can obtain  

  xdWe
3)()(

2
1 rr . 

The above-mentioned equation can be shown to be valid macroscopically only if the behavior 

is linear.  To generalize the formula, we consider a small change in the energy We due to 

some sort of change d in the macroscopic charge density  in all space. The work done for 

achieving this change is  

  xdWe
3)()( rr , 

where (r) is the potential due to the charge density  already present. With  D , it can 
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be found that 

  xdxdWe
33)()( DErD  , 

where the relation E  has been used. The total energy can be expressed as 

   xdxdW
D

e
3

0

3)()( DErD  . 

If the medium is linear, then 2/)( DEDE    and the total energy is given by 

  xdxdxdxdWe
3333 )()(

2
1)()(

2
1))((

2
1

2
1 rrrDrDED   

Consequently, for a linear medium, the rate of change of the stored energy of the electric field 

is given by 

 

 xd
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Chapter Six: Magnetostatics and Faraday’s Law 

1. Biot and Savart Law 

In 1819 Oersted observed the phenomenon that wires carrying electric currents can produce 

deflections of permanent magnetic dipoles placed in their neighborhood. This phenomenon 

indicates that the currents are sources of magnetic-flux density. Biot and Savart in 1820 first 

established the basic experimental laws relating the magnetic induction B to the currents. On 

the other hand, Ampère during 1820-1825 performed much more elaborate and thorough to 

establish the law of force between one current and another. The conclusion is that if dl is an 

element of length of a wire with a current I at r and r is the coordinate of an observation point 

P, as shown in Fig. , then the elemental flux density dB at the point P is given by 
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 . 

Ampère did not directly determine the relation between currents and magnetic induction, but 

considered rather the force that one current-carrying wire experiences in the presence of 

another. Experimental results revealed that the force experienced by a current element I1dl1 in 

the presence of a magnetic induction B is given by 

  BlF  11 dId  . 

When the magnetic induction B is due to a closed current loop #2 with current I2, the total 

force experienced by a closed current loop #1 is 
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The line integrals are taken around the two loops, as shown in Fig.. With the formula 

)()()( BACCABCBA   , 

the integrand can be put in a form that 
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The first term involves a perfect differential in the integral over dl1. As a consequence, it gives 

no contribution to the integral in Eq. (), when the paths are closed or extend to infinity. Then 

Ampère’s force law is given by 
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F ddIIo




 . 

This equation explicitly displays symmetry and satisfies Newton’s third law. 
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    Each of two long, parallel, straight wires a distance d apart, carrying currents I1 and I2, 

experiences a force per unit length directed perpendicularly toward the other wire and of 

magnitude, 

 
d
II

dl
dF o 21

2
  . 

The force is attractive (repulsive) if the currents flow in the same (opposite) directions. The 

forces that exist between current-carrying wires can be used to define magnetic-flux density in 

a way that is independent of permanent magnetic dipoles. For a current density J(r) in an 

external magnetic-flux density B(r), the elementary force law implies that the total force on 

the current distribution is 

   rd 3)()( rBrJF  . 

The total torque is given by 

    rd 3)()( rBrJrN  . 

Example 1: A circular loop of radius a carrying current I lies in the x-y plane with its center at 

the origin. Find the magnetic induction field at a point on the z-axis. 

Solution: In cylindrical coordinates,     al dIaId  and   aarr z az . Thus, 
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where we have used the fact that 0
2

0
 



 da  . In terms of the magnetic moment,  

zam 2aI , of the loop, the result at large distance can be approximated as 
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2. Differential Equations of Magnetostatics and Ampère’s Law 

The basic law 
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3. Vector Potential 

The basic equations for magnetostatics are 

0)(  rB  

)()( rJrB o  

A general method of solving them is to exploit the equation 0)(  rB . If 0)(  rB  

everywhere, B must be the curl of some vector field A(r), called the vector potential 

 )()( rArB   

From  
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, the general form of A is 
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rdo  . 

The added gradient of an arbitrary scalar function  shows that for a given magnetic 

induction B, the vector potential can be freely transformed according to  

  AA  . 

This transformation is called a gauge transformation. The freedom of gauge transformations 

makes A  have any convenient functional form.  

Substituting )()( rArB   into )()( rJrB o , we find 
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With the Coulomb gauge 0 A , each rectangular component of the vector potential 

satisfies the Poisson equation 

 )(2 rJA o  

It is clear that the solution for A in unbounded space is  
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with =constant, i.e., 
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The condition =constant can be understood as follows. The Coulomb gauge 0 A  

indicates that 0)(2  r . If 0)(2  r  holds in all space,  must be at most a constant 

provided there are no sources at infinity. 

Example 2: A circular loop of radius a carrying current I lies in the x-y plane with its center at 

the origin. Find the vector potential and the magnetic induction field at a point on the z-axis. 

Solution: To begin with, considering a current loop with a radius a in the plane perpendicular 

to z-axis with an expansion angle of , the current density can be expressed as 

  )sin/()cos(cos1
2  


 aJ arIa
r

. 

Note that the unit vector  a  can be in terms of the coordinates of the observation point: 

   aaaa cossin)sin()cos(  r  

Using 0cos   for the current I lying in the x-y plane, the current density can be written as 
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Substituting the current density into the formula of the vector potential, we have 
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The denominator term in the integration can be expanded as the form of the power series of 

the term )cos(   . Therefore, it can be confirmed that only the component along a  

survives because the orthogonality between )cos(    and )sin(   . Since the azimuthal 

integration is symmetry, the vector potential for the a  component can be conveniently 

evaluated with 0 : 
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Restricting the discussion to large distances from the current loop, r >> a, the integration can 

be approximated as 
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Far from the loop, the fields are given by 
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Comparison with the electrostatic dipole fields shows that the magnetic fields far away from a 

current loop are dipole in character. By analogy with electrostatics, the magnetic dipole 

moment can be defined to be 2aIm  . Next a spherical harmonic expansion is used to point 

out similarities and differences between the magnetostatic and electrostatic problems. Before 

discussing this problem, we consider the following example for convenience. 

 

 

Example 3: A localized cylindrically symmetric current distribution is such that the current 

flows only in the azimuthal direction; the current density is a function only of r and  (or  

and z):  ),(   aJ rJ . The distribution is “hollow” in the sense that there is a current-free 

region near the origin, as well as outside. Find the azimuthal component of the vector 

potential. 

Solution: The expansion for ||/1 rr  is given by 
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This can be written entirely in terms of real functions as 
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the current density can be expressed as 

     aaaaJ cossin)sin()cos(),(),(   rrJrJ , 

where the unit vector  a  is in terms of the coordinates of the observation point. Using the 

orthogonal property for the terms )](cos[  m , only the terms with 1m  can contribute 

to the integration. So, the vector potential can be expressed as 
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To evaluate the radial component of magnetic induction from 
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Example 4: Using the form of the differential equation, find the vector potential and the 

magnetic induction field in spherical coordinates for a circular loop of radius a carrying 

current I lies in the planes of z = d·cos and d = a/sin with its center at the z-axis.  

Solution: In the Coulomb gauge, )(2 rJA o . Considering that the current flows only in 

the azimuthal direction:  ),(  aJ rJ . In spherical coordinates   and ,,r , the Poisson 

equation for  ),(   arA can be written in the form 
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The differential equation can be rewritten as 
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First considering the homogeneous equation 
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The solution ),(  rA  can be expressed as the product of a radial part and an angular part, 
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Substituting the form into the equation yields 
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Multiplying Eq. () by UPr /2  can result in 
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If Eq. () is to hold for arbitrary values of the independent coordinates, each of the terms must 

be separately constant: 
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The solution of the radial differential equation is 
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The current density can be expressed as 
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Similar to the expansion for the    coscos , the vector potential for this equation can be 

expanded with the basis )(cos1 lP  as 
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The function ),( rrg l   can be solved to be 
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where )(  rr  is the smaller (larger) of r and r. Therefore, the vector potential due to the 

current density    rr
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In general, the vector potential due to the current density ),( rJ  is then given by 
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Example 5: A circular loop of radius a carrying current I lies in the planes of z = d·cos and d 

= a/sin with its center at the z-axis. Find the vector potential and the magnetic induction 

field in spherical coordinates.  

Solution: Using the result of Example 3, 
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The current density in spherical coordinates is given by 
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Substituting this current density into the equations, the vector potential and magnetic 

induction fields are given by 
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where )(  rr  is the smaller (larger) of r and d. For the special case 2/  , d = a, the 

fields are then given by 
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Therefore, the vector field can be expressed as 
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The radial component of magnetic induction is then given by 
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The  component of B is similarly 
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The upper line holds for r < a, and the lower line for r > a. For r >> a, only the n = 0 term in 

the series is important. Since  sin)(cos1
1 P , the expressions can be reduced to 
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    Another mode of attack on the problem of the planar loop is to employ an expansion in 

cylindrical waves. The expansion for ||/1 rr  in cylindrical coordinates is given by 
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where )(    is the smaller (larger) of  and . Alternatively, it can be expressed as 
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where )(  zz  is the smaller (larger) of z and z. For a current loop lying in the x-y plane, the 

current density in cylindrical coordinates can be written as 

    aaaJ )sin()cos()()( )()(   azaIazaI . 

Therefore, the vector potential can be expressed as 
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where )(    is the smaller (larger) of  and a. Alternatively, it can be expressed as 
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On the other hand, we can use another form to obtain 
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Example 6: Helmholtz coils: two coaxial, parallel, circular loops of radius a carrying current 

I lie in the planes of z = b/2 and z = b/2 with their centers at the origin. Find the magnetic 

induction field at a point on the z-axis. 

Solution: Using the result of Example 3, 
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The current density for Helmholtz coils can be expressed as 

)())cos((cossin)()cos(cossin),( dr
r

Idr
r

IrJ 





  . 

Here da /sin   and 222 )2/( abd  . Therefore,  
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For the observation on the z-axis and near the origin,  = 0 , zr  , and dr  . Therefore, 

the magnetic induction can be expressed as 
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Therefore, ),0,0( zBz  is nearly a constant when b = a. In other words, the pair of coils yields 

an approximately uniform field along the axis if it is positioned at a distance equal to the 

radius of the coils. Coils of this kind are called Helmholtz coils. 

 

Example 7: A sphere of radius R carries a uniform surface-charge distribution . The sphere 

is rotated about a diameter with constant angular velocity . Find the vector potential and 

magnetic-flux density both inside and outside the sphere. This serves as a simple model for 
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the magnetic field of the Earth. 

Solution: The current density is given by 

 vJ  , 

where )( Rr    and rωv  . 
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In terms of the spherical coordinates of the observation point, 

  aaaa )sin()sin()cos()sin()cos(  r . 

The expansion for ||/1 rr  is given by 
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Using the orthogonal property for the terms )](cos[  m , the vector potential can be 

expressed as 
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Example 8: Two coaxial, parallel, circular loops of radius a carrying current I lie in the planes 

of z = b/2 and z = b/2 with their centers at the origin. Find the magnetic induction field at a 

point on the z-axis. 

Solution: In cylindrical coordinates,     all dIaIdId 21 . In terms of the coordinates of 

the observation point,  

   aaa )sin()cos(   . 

The position vectors for the two coils are   aar z ab )2/(1  and   aar z ab )2/(2 . 

Note that  

   aaa )sin()cos(   . 

Therefore, we have 

   aaarr z )sin()]cos([)2/(1  aabz  , 
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   aaarr z )sin()]cos([)2/(2  aabz  . 

The distances are given by 

 )cos(2)2/(|| 222
1   aabzrr  , 

 )cos(2)2/(|| 222
1   aabzrr  . 

The terms )( rrl d  are given by 
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For the observation on the z-axis,  = 0, we have 
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An expansion of Bz about z = 0 yields 
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where 222 )2/( abd   . Therefore, ),0,0( zBz  is nearly a constant when b = a. In other 

words, the pair of coils yields an approximately uniform field along the axis if it is positioned 

at a distance equal to the radius of the coils. Coils of this kind are called Helmholtz coils.  

 

4. Magnetic fields of a localized current distribution 
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5. The Magnetic Scalar Potential 

Although not the same as theoretical importance as the magnetic vector potential, the 

magnetic scalar potential is extremely useful for solving problems involving magnetic fields. 

Considering the magnetic induction produced by a closed loop carrying a current I, in the 

region of space where 0)( r


J , we have 0)(  r


B  to express the magnetic induction as 

the gradient of a scalar potential: 

 MB  . 

The change in any scalar function M  due to an infinitesimal change dr is given by 

 rBr ddd MM   . 

Using the Biot-Svart law express the magnetic induction, we have 
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It is interesting to relate this expression to the solid angle , subtended by the current loop. As 

shown in Fig.,  
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with rrR  , where –R is a vector pointing from the observer at the field point to a point 

on the surface enclosed by the loop. If the observer moves by an amount dr, the solid angle 

subtended by the loop will change. Consequently, 
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Comparing d with dM, we find that 
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Example 1: A circular loop of radius a carrying current I lies in the x-y plane with its center at 

the origin. Find the magnetic scalar potential at a point below the center of a circular current 

loop. Use the scalar potential to find the magnetic induction field at a point on the z-axis. 

Solution: In cylindrical coordinates, rrz aarrR z  . Thus, for z<0, we find 
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Note that for z>0, the expression for  becomes 
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Hard Ferromagnets 

  A practical case concerns hard ferromagnetic, having a magnetization that is essentially 

independent of applied fields for moderate field strengths. Such materials can be treated as if 

they had a fixed, specified magnetization M(r). From 0)(  rB  and 

 )()()( rMrHrB  o , we have 

 )()( rMrH   . 

Furthermore, in the region of space where 0)( r


J , we have 0)(  r


H  to make 

 MH  . 

Therefore, combining the two equations yields 

 )(rM M  . 

It becomes a magnetostatic Poisson equation, 

 MM 2  

with the effective magnetic-charge density 

 )(rMM  . 

When there are no boundary surfaces, the solution for the potential M  is given by 
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where the volume of integration V contains all the magnetization. The above equation can be 

transformed into a more useful form. Using the identity 
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we rewrite M  as 



22 
 

   
















space all space all

33 1)(
4
1)(

4
1)( rdrdM rr

rM
rr
rM

r


 . 

Since M vanishes on the boundary of the volume of integration, the first integral can be 

shown to be a vanishing surface integral with the divergence theorem. Thus the potential M  

becomes 
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It is sometimes convention to treat the problem that the magnetization M has a finite 

volume V and surface S and falls suddenly to zero at the surface S. To deal with the 

discontinuity of M at the boundary of the material, the integration is divided into two region: 

one is the volume V and the other is the volume outside V. Thus 
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the second integral can be expressed as 
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The second integral over outside the volume V vanishes as M is zero. The first integral can be 

rewritten as a surface integral with the divergence theorem, 
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The negative sign is due to the fact that n  is the outwardly directed normal of the volume V. 

Then we obtain 
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An important special case is that of uniform magnetization throughout the volume V. Then the 

first term vanishes; only the surface integral over S contributes. 
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Example: Find the magnetic scalar potential of a magnetized sphere of radius a having 

magnetization zoM arM )( . 

Solution: Using the form 
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Using the fact 
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it can be shown that only the 0l  term survives the angular integration and the integral is 

written as 
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Outside the sphere, ar  , the integral is explicitly given by 
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Inside the sphere, ar  , the integral is explicitly given by 
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As a result, we have 
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It can be checked that the boundary conditions on B and H are satisfied, i.e. the tangential H 

fields and the normal B field are continuous.  

Magnetic shielding 

A permeable body is placed in the region of empty space where a certain magnetic induction 

Bo exists. The lines of magnetic induction are modified. Concerning media of very high 

permeability, the field lines are expected to tend to be normal to the surface of the body. 

Similar to conductors, if the body is hollow, it is expected that the field in the cavity is smaller 

than the external field, vanishing in the limit  . Such a reduction in field is regarded as 

the magnetic shielding provided by the permeable material. It is practically important, since 

essentially field-free regions are often necessary or desirable for experimental purposes or for 

the reliable working of electronic devices..   

Example: A spherical shell of permeable material having inner radius a and outer radius b is 

placed in an initially uniform magnetic induction field Bo. Find the magnetic induction field 
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inside the spherical shell. 

Solution: In the absence of any free currents, 0 H , implying that H may be written as 

the gradient of a potential, MH . Consequently,  

0)()(  MHB  . 

For piecewise constant , we have 

02  M  . 

Taking the z axis along the initial field Bo, we have M B  and Bo=oHo. Thus at 

sufficiently large distance from the shell, cos)( rHzHr ooM  . Expanding 

)(rM  in spherical polar coordinates in each of the three regions, explicitly putting in the 

asymptotic form of )(rM  for large r, we get 
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The boundary conditions at r=a and r=b are 

 )()(         )()(   bHbHaHaH   

)()(         )()(   bBbBaBaB rrrr  . 

In terms of the magnetic scalar potential, the boundary conditions are given by 
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Using arguments akin to those used in the electrostatic examples, but more laboriously, we 

can show that all the coefficients with 1  vanish. The equations for 1  are given by 
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After some algebra, we have 
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The exterior potential  

 coscos)( 2
1

r
A

rHoM  r  

consists of that for a uniform field Ho plus the field of a dipole with magnetic moment 4A1, 

oriented parallel to Bo. Inside the cavity, there is a uniform magnetic induction 1DooHB  . 

When the permeability of the shell  is much greater than that of vacuum, the coefficients  

oHbA 3
1    

and 
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31
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b
a

H
D oo  . 

For shields of high permeability, m ranges from 103 o to 109 o; even relatively thin shells 

cause a great reduction of B in the interior shell.  
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Faraday’s Law of induction 

Here the effect of a slow variation in the electromagnetic fields is considered. The meaning of 

the slowly varying fields is that the sources do not change considerably during the time it 

takes for their fields to propagate to any point in the region of interest. It is clear that charged 

particles experience a force when they move through a magnetic field. It is expected and 

experimentally verified that the same force is experienced by charged particles whether they 

move while the magnetic field is stationary or they are stationary while the magnetic field is 

moved in the same relative manner. At the position of the particle, a moving source of 

magnetic field is perceived as a temporally varying magnetic field. Any local field 

interpretation would therefore require that the force on the particle depend on t /B . It will 

evolve that the force felt by such a stationary particle must be reinterpreted as resulting from 

an electric field.  

    When a charge is forced to move through a magnet induction field, it is subjected to a 

force due to motion through the field BvF  q . In this case, it is important to note that the 

magnetic field does not do any work on the charge. The agent that produces or maintains v 

does the work. Let us consider the electromotive force (EMF) for a mobile loop placed in a 

static electric and magnetic field. The force on a charge attached to the moving loop is then 

)( BvE q , leading to an electromotive force (EMF) 

 lBvE d
tC

  )(
)(  . 

For a static field, 0
)(

  lE d
tC

 . To begin with, let us consider a loop whose shape does 

not change to move through a magnetic induction field whose strength varies with position. 

The sides of the moving loop will evidently experience a time-dependent field. For 

simplifying discussion, consider a small rectangular loop of dimensions x and y in the x-y 

plane, moving in the x-direction through a magnetic induction field whose z component varies 

linearly with x. The electromotive force (EMF) generated around the moving loop is generally 

given by 

 lBv d
C

  )(  . 

When the field is spatially dependent, the integral can be expanded as 

  


yx

z

y zz dxdy
x
B

vdyydxxvBdyyxvB


)),(),((  . 
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It is known that physical phenomena are the same when viewed by two observes moving with 

a constant velocity v relative to one another. It is expected and experimentally verified that the 

same EMF is induced in the loop whether it is moved while the magnetic induction field is 

stationary or it is held fixed while the magnetic induction field in moved in the same relative 

manner. Mathematically, the term )/( xBv z   in the integrand can be replaced with 

)/( tBz   to manifest the different moving coordinate systems. Therefore, if instead of 

moving the loop we move the magnet responsible for the field above, the same EMF is 

required. However, since now the velocity v = 0, implying there can be no contribution from 

Bv . In other words, the line integral of the electric field cannot vanish when we have 

temporally varying fields. Equivalently, we must have 

  



SC
da

t
d nBlE  . 

Next, the loop is assumed to be stretched and deformed with velocity v. For a static field, 

0
)(

  lE d
tC

 . Therefore the EMF can be rearranged as 

  
)(

)(
tC

d Bvl . 

During a time dt, a segment of the loop of length dl moves to change the area within the loop 

by )( dtdda vln  . Thus, the EMF can be expressed as  

  
)(

)/(
tS

dtda Bn  

 

6. Energy in the magnetic field 

Considering a single circuit with a constant current I flowing in it, when the flux through the 

circuit changes, an electromotive force E is induced around it. To keep the current constant, 

the sources do work to maintain the current at the rate 

td
d

II
dt

dW Bm  E  

the negative sign following from Lenz’s law. As a result, if the flux change through a circuit 



29 
 

carrying a current I is B, the work done by the source is 

Bm IW    

To derive the energy in the loop, the current density distribution is broken up into element 

current loops. For each element loop, the increment of work done against the induced emf is 

 
Sm daJW nB )()( . 

With AB  , we can obtain  

 
Sm daJW nA)()()(   

Using the Stokes’s theorem, this equation can be written as 

 
Cm dJW lA )()( . 

With rddJ 3Jl  , the sum over all such element loops will be the volume integral. 

Hence the total increment of work done by the external sources due to a change A(r) in the 

vector potential is  

  xdWm
3JA  

Using Ampere’s law JH  , this equation can be rewritten as  

  xdxdxdWm
333 BHAHHA    

This relation is the magnetic equivalent of the electrostatic equation  

  xdxdWe
33)()( DErD  . 

In its present form it is applicable to all magnetic media, including ferromagnetic substances. 

When the medium is para- or diamagnetic, so that a linear relation exists between H and B, 

then 2/)( BHBH   . When the fields are increased from zero to their final values, the 
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total magnetic energy is 

  xdWm
3

2
1 BH  

Consequently, the total energy density for the linear media can be denoted by 

)(
2
1 BHDE u . 
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Chapter Seven: Maxwell Equations and gauge transformations 

The almost independent nature of electric and magnetic phenomena disappears when 

time-dependent problems are considered. Time-varying magnetic fields give rise to electric 

fields and vice versa. The full import of the interconnection between electric and magnetic 

fields and their essential sameness becomes clear only within the framework of special 

relativity. Here we content ourselves with examining the basic phenomena and deducing the 

set of equations known as the Maxwell equations, which describe the feature of 

electromagnetic fields. We next discuss vector and scalar potentials, gauge transformations, 

and Green functions for the wave equation.  

Modification of Ampere’s law 

If we consider Ampere’s law in the form 

JH   

and take the divergence of both sides, it is found that  

0 J  

Note that the divergence of a curl vanishes. Thus, if the equation of continuity  

0




t


J  

needs to be satisfied, then Ampere’s law must be modified. This modification was first carried 

out by J. C. Maxwell. Maxwell started with Gauss’s law  D  to get 

tt 




 D

. 

Replacing this in the continuity equation yields 

 0











t

D
J . 

Thus, Maxwell proposed rewriting Ampere’s law in the form  

t



D

JH . 

This form clearly reduces to the original Ampere’s law when the charge density  is 

independent of time. The quantity  

tD 



D

J  

is referred to as the displacement current. In fact, Maxwell has another more ohysical reason 
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for introducing the displacement current. Maxwell proposed that the displacement current 

through the electric between the plates of the capacitor to keep the current density to be 

continuous. Thus, we have the complete set of Maxwell equations to be given by 

0

0
















B

B
E

D
JH

D

t

t



 . 

These four equations need to be supplemented by constitutive relations relating D and E, B 

and H, as well as J and E. The simplest constitutive relations hold for non-ferromagnetic, 

linear, isotropic materials. They are an empirical statement about the material: 

EJ

HB

ED









 . 

Vector and scalar potentials 

The Maxwell equations consists of a set of coupled first-order partial differential equations 

relating the various components of electric and magnetic fields. It is often convenient to 

introduce potentials, obtaining a smaller number of second-order equations, while satisfying 

some of the Maxell equations identically. Here we use the scalar potential  and the vector 

potential A that have been already introduced in electrostatics and magnetostatics.  

Since 0 B  still holds, B can be defined in terms of a vector potential: 

AB  . 

Then the other homogeneous equation 0/  tBE , Faraday’s law, can be written  

0











t

A
E . 

This indicates that the quantity with vanishing curl in Eq. () can be written as the gradient of 

some scalar function, namely, a scalar potential : 

tt 







A

E
A

E  

The definition of B and E in terms of the potentials A and  satisfies identically the two 

homogeneous Maxwell equations. Putting these two equations into two inhomogeneous 

Maxwell equations for the vacuum case, we can obtain 
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where we have used 2/1 coo  . Using AAA 2)(  , the last equation can 

be written 
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The most convenient gauge for radiation problems is the so-called Lorenz gauge,  

0
1

2 




tc

A  . 

With the Lorenz gauge condition, the equations for  and A can be written 
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. 

Thus, with the help of the gauge condition, we now have the decoupled equations for the 

potentials. 

Gauge transformations, Lorenz gauge, Coulomb gauge 

Since B is defined through AB  , the vector potential is arbitrary to the extent that the 

gradient of some scalar function  can be added. Thus B is left unchanged by the 

transformation,  

 AAA . 

For the electric field t /AE  to be unchanged as well, the scalar potential must 

be simultaneously transformed, 

t


 . 

The freedom implied by the last two Equations () and () means that we can choose a set of 

potentials (A, ) to satisfy the Lorenz condition. To see this transformation, suppose that the 

original potentials A,  do not satisfy the Lorenz condition. Then let us make a gauge 

transformation to potentials A,  and demand that A,  satisfy the Lorenz condition: 
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Thus, provided a gauge function  can be found to satisfy 
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the new potentials A,  will satisfy the Lorenz condition and the two inhomogeneous wave 

equations in ( ).  

Even for potentials that satisfy the Lorenz condition there is arbitrariness. Evidently, the 

restricted gauge transformation,  

t




 AA

 

where  

0
1

2

2

2
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tc

 

preserves the Lorenz condition, provided A,  satisfy it initially. All potentials in this 

restricted class are said to belong to the Lorenz gauge. The Lorenz gauge is commonly used, 

first because it leads to the wave equations which treat  and A on equivalent footings, and 

second because it is a concept independent of the coordinate system chosen and so fits 

naturally into the considerations of special relativity. 

    Another useful gauge for the potentials is the so-called Coulomb, radiation, or transverse 

gauge:   

0 A . 

From  

ot 
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The scalar potential can be found to satisfy the Poisson equation,  

o /2    

with solution, 
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. 

The scalar potential is just the instantaneous Coulomb potential due to the charge density 
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(r,t). This is the origin of the name “Coulomb gauge”.  

   The vector potential A satisfies the inhomogeneous wave equation, 
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The current density can be written as the sum of two terms 

 tl JJJ  ,  

where Jl is called the longitudinal or irrotational current and has 0 lJ , while Jt is called 

the transverse or solenoidal current and has 0 tJ . The following derivation shows that 

 lotc
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we have 

 











































 

rd
tt

rdt

rdtt

3

32

3

||

),(

||

),(

4

1
           

||

1
),(

4

1
           

)(),(),(

rr

rJ

rr

rJ

rr
rJ

rrrJrJ







 

Based on 0 lJ  and 0 tJ , we can identify that 

 








 rd
t

rd
t

tt
33

||
),(

4
1

||
),(

4
1

 ),(
rr

rJ
rr

rJ
rJ


 

and 

  













 rd

t
tl

3

||

),(

4

1
 ),(

rr

rJ
rJ


. 

The last equation can be further simplified as 
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Therefore the source for the wave equation for A can be expressed entirely in terms of the 

transverse current: 

 totc
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A
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This is the origin of the name transverse gauge. The name “radiation gauge” stems from the 

fact that transverse radiation fields are given by the vector potential alone, the instantaneous 

Coulomb potential contributing only to the near fields. This gauge is particularly useful in 

quantum electrodynamics. A quantum-mechanical description of photons necessitates 

quantization of only the vector potential. The Coulomb or transverse gauge is often used when 

no sources are present. Then  = 0, and A satisfies the homogeneous wave equation. The 

fields are given by 

 
t




A
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 AB  . 

 

The inhomogeneous wave equation 

With the Lorenz gauge condition, the equations for  and A can be written 
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. 

In order to relate the radiation fields to the sources, it is usually needed to solve the 

inhomogeneous wave equations for the potentials. The two equations are not independent 

because  and J are related by the continuity equation. The electric and magnetic fields may 

be obtained from the solutions of the equations as 

 
t

 A
E  , 
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 AB  . 

In practice it is sufficient to evaluate A since B may be found directly as its curl, and outside 

the source, E may be obtained from B.  

 

Green Functions for the wave equation 

Both wave equations have the same form as 

 ),(1
2

2

2
2 tf

tc
r


   . 

One commonly useful method of solving the wave equation is based on the Fourier analysis 

to deal with only one frequency component. After the single-frequency solution has been 

found, the time dependent solution can be found by summing the frequency components. 

With the Fourier transform, the source function ),( tf r  and the frequency spectrum ),( rF  

can be related by 
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In the same way, the solution  can be expressed as 
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Substituting the Fourier components into the wave equation, we obtain 

 ),(),()( 22  rr Fk   , 

where k = /c. The solution of this equation can be synthesized with the Green’s function that 

satisfies the equation 

 )(4),()( 22 rrrr  kGk  . 

It is clear that the Green’s function that is the solution of the unit point source. The frequency 

component ),( r  of the total solution of the source function ),( tf r  can be found by 

integrating all point source solutions with the appropriate weight ),( rF : 

   rdGF k
3),(),(

4
1),( rrrr 


  . 

The Green’s function ),( rr kG  can be conveniently found by using the property of the 
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spherical symmetry about r . Denoting the distance from the source by || rr R , the 

Green’s function at points other than 0R  must satisfy 

 0)(1 2
2

2

 kk GkRG
dR
d

R
 . 

It is well known that the solution of this equation is given by 

 ikR
k CeRG  )(  . 

Thus the general solution for the Green function can be expressed as  

 )()( )()(   kkk BGRAGRG  . 

where 
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In the limit of 0R , the wave equation reduces to the Poisson equation, since 1kR . 

With the help of )(4)/1(2 RR  , the coefficients of A and B need to satisfy 1 BA  . 

We further evaluate ),( r  
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The time-dependent solution ),( tr  can be obtained by taking the inverse Fourier transform 
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With the definition of 
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|| rr   , the solution is rewritten as 
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Physically, the term with the + sign (the retarded solution) states that the present potential at r 

was caused by the source a travel time R/c earlier. The term with the – sign (the advanced 

solution) means that the current potential depends on the behavior of the source in the future 

at cRtt / . For the retarded solution, it is sometimes written explicitly as 
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The square bracket [ ]ret means that the time t is to be evaluated at the retarded time, 

ctt /|| rr  . Use of the retarded solution for wave equations 
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where it is convenient to use rrR  , || rr R , and R/ˆ RR   (in the following). 

These solutions were first given by Lorenz. In principle, from these two solutions the electric 

and magnetic fields can be computed, but it is often useful to have retarded integration 

solutions for the fields in terms of the sources. In the following, these solutions will be 

derived.  

 

Retarded solutions for the Fields: Jefimenko’s generalizations of the 

Coulomb and Biot-Savart Laws 

The electric and magnetic fields may be obtained from the solutions of the equations as 
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The retarded solutions for the fields can be immediately written in the preliminary forms 
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The time derivative in the integrand has the property 
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After some algebra, we can obtain 
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If the charge and current densities are time independent, the expressions reduce to the familiar 

static expressions. The terms involving the time derivatives and the retardation provide the 

generalizations to time-dependent sources. These two results, sometimes known as 

Jefimenko’s generalizations of the Coulomb and Biot-Savart laws, were popularized in 

Jefimenko’s text. Alternatively, the fields can be expressed as 

 



















 










 










0

3
22

),(ˆ),(ˆ
)],([

4
1 ),( rd

R
t

tcR
t

tcR
tt

retret

ret
o

rJRrRrrE



, 

 



































0

3
2

ˆ
),(

ˆ
)],([

4
),( rd

R
t

tcR
tt

ret
ret

o RrJRrJrB



 

Considering a point charge q moving with a velocity )(tq  rv  , the charge and current 

densities are 

   )(, tqt q  rrr   

   )()(, ttqt qq  rrrrJ   

Note that )(tq r  is the position of charge at t . The retarded integrations for the charge and 

current densities are given by 
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The further evaluation can be done with the property of delta function 
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With )()( ttR q  rr , we obtain 
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where   )()( tt qq  rrrrn  is an instantaneous unit vector.  We can have  
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Setting nβ  1 , the retarded integrations for the charge and current densities are given by 

      
retqret tqt )(1,  rrr 


  , 

      
retqret ttqt )()(1,  rrvrJ 


 . 

Substituting these results into the expressions for the fields, we have 
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Spherical wave solutions of the scalar wave equation 

Spherical harmonic expansions for the solutions of the Laplace or Poisson equations were 

employed in potential problems with spherical boundaries or to develop multipole expansions 
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of charge densities and their fields. We extend spherical harmonic expansions to the 

development of spherical wave solutions of the scalar wave equation for radiating sources. 

    A scalar field (r,t) satisfying the source-free wave equation is given by 

 01
2

2

2
2 




tc
  . 

With the Fourier transform, the solution  can be expressed as 
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2
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  det tirr  , 
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1),( dtet ti


 rr  . 

Substituting the Fourier components into the wave equation, we obtain 

 0),()( 22  kk r  , 

where k = /c. For problems possessing symmetry properties about some origin, it is 

convenient to have fundamental solutions appropriate to spherical coordinates. The separation 

of the angular and radial variables follows the expansion 
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The radial functions )(rfl  satisfy the radial equation, independent of m,  
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With the substitution,  

 )()( 2/1 rurrf ll
  , 

Eq. () is transformed into 
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This equation is just the Bessel equation with 2/1 lm . Thus the solution for )(rfl  are 
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2/1
2/1 krNrBkrJrArf lllll 




   . 

The solutions are customarily expressed as spherical Bessel and Hankel functions, denoted by 

)(xjl , )(xnl , )()2,1( xhl , as follows: 
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It can be further shown that 
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For the first few values of l the explicit forms are given by 
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From the series 
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the small argument limits are given by 
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Similarly the large argument limits are 
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The spherical Bessel functions satisfy the recursion formuals, 

)(12)()( 11 xz
x

lxzxz lll
   , 

)()12()()1()( 11 xzlxzlxlz lll   . 

The Wronskians of the various pairs are 
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The general solution for the Helmholtz equation  

 0),()( 22  kk r  

in spherical coordinates can be written  
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where the coefficients mlA ,  and mlB ,  are determined by the boundary conditions. 

    The outgoing wave Green function ),( rr kG , which is appropriate to the equation, 

 )(4),()( 22 rrrr  kGk  , 

is given by 
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The spherical wave expansion for ),( rr kG  can be obtained in exactly the same way as was 

done for the Poisson equation. Thus the expansion of the Green function is 
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The energy conservation law of electrodynamics: The Poynting vector  

Considering the work dEmech done by the electromagnetic fields on the charge dq contained in 

a small volume d3x, moving through the field with velocity v when it is displaced through 

distance dl, the work performed by the Lorentz force is given by 

    dtdqlddqdEmech vBvEBvE 


 

Replacing dq with d3x, the total rate of doing work by the fields is a small volume V is  
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VV

mech xdxd
dt

dE 33 EJvBvE  

Using the Maxwell-Ampere law, we can obtain 

 









V
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t

xd 33 EDHEJ . 

From the Faraday’s law, the above-mentioned equation can be modified as 

 


















V
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xd 33 HΒEEDHEJ  

Note that since 0



t
ΒE , the added term does not lead to any influence.  

Using EHHEHE  )()()( , we obtain 

 






















V
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rd
tt

xd 33 )( ΒHDEHEEJ  

Before proceeding to the further derivation, we review section 4.7 to understand the stored 

energy in the electric field. From the energy of a system of charges in free space, we can 

obtain  

  xdWe
3)()(

2
1 rr . 

The above-mentioned equation can be shown to be valid macroscopically only if the behavior 

is linear.  To generalize the formula, we consider a small change in the energy We due to 

some sort of change d in the macroscopic charge density  in all space. The work done for 

achieving this change is  

  xdWe
3)()( rr , 

where (r) is the potential due to the charge density  already present. With  D , it can 

be found that 

  xdxdWe
33)()( DErD  , 

where the relation E  has been used. The total energy can be expressed as 

   xdxdW
D

e
3

0

3)()( DErD  . 

If the medium is linear, then 2/)( DEDE    and the total energy is given by 

  xdxdxdxdWe
3333 )()(

2
1)()(

2
1))((

2
1

2
1 rrrDrDED   

Consequently, for a linear medium, the rate of change of the stored energy of the electric field 
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is given by 

 

 xd

tdt
dWe 3ED  

Now, we review section 5.16 to understand the energy in the magnetic field. Considering a 

single circuit with a constant current I flowing in it, when the flux through the circuit changes, 

an electromotive force E is induced around it. To keep the current constant, the sources do 

work to maintain the current at the rate 

td
d

II
dt

dW Bm  E  

the negative sign following from Lenz’s law. As a result, if the flux change through a circuit 

carrying a current I is B, the work done by the source is 

Bm IW    

To derive the energy in the loop, the current density distribution is broken up into element 

current loops. For each element loop, the increment of work done against the induced emf is 

 
Sm daJW nB )()( . 

With AB  , we can obtain  

 
Sm daJW nA)()()(   

Using the Stokes’s theorem, this equation can be written as 

 
Cm dJW lA )()( . 

With rddJ 3Jl  , the sum over all such element loops will be the volume integral. 

Hence the total increment of work done by the external sources due to a change A(r) in the 

vector potential is  

  xdWm
3JA  

Using Ampere’s law JH  , this equation can be rewritten as  

  xdxdxdWm
333 BHAHHA    

This relation is the magnetic equivalent of the electrostatic equation  

  xdxdWe
33)()( DErD  . 

In its present form it is applicable to all magnetic media, including ferromagnetic substances. 

When the medium is para- or diamagnetic, so that a linear relation exists between H and B, 
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then 2/)( BHBH   . When the fields are increased from zero to their final values, the 

total magnetic energy is 

  xdWm
3

2
1 BH  

Consequently, the total energy density for the linear media can be denoted by 

)(
2
1 BHDE u . 

In terms of u, the following equation  
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can be expressed as 

 








V
V

rd
t
uxd 33 )( HEEJ  

Since the volume V is arbitrary, this can be cast into the form of a differential continuity 

equation or conservation law, 

t
u

 SEJ  

where the Poynting vector S, representing energy flow, is given by 

HES  . 

The physical meaning of Poynting’s theorem is that the time rate of change of electromagnetic 

energy within a certain volume, plus the energy flowing out through the boundary surfaces of 

the volume per unit time, is equal to the negative of the total work done by the fields on the 

sources within the volume. Then Poynting’s theorem expresses the conservation of energy for 

the combined system as  

 
SV

fieldmech dard
dt

dE

dt
dE

dt
dE nSHE 3)( , 

where the total field energy within V is  

 
V

o

Vfield rdcrduE 32223 )(
2

BE


  

The momentum conservation law: The Maxwell stress tensor 

For the conservation of linear momentum, we consider the sum of all the momenta of all the 

particles in the volume Pmech. With Newton’s second law and  BvEF  q , we have  

  
V

mech rd
dt

d 3BJE
P   

Using the Maxwell equations, the integrand can be expressed as 
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The rate of change of mechanical momentum can now be expressed as 

  
V o
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dt

d
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d 322 BBBBEEEE
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where 

  
Vfield rd

c
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2
1 HEP  

The integrand can be interpreted as a density of electromagnetic momentum, i.e., 

 HEg  2
1
c

 

Note that the momentum density g is proportional to the energy-flux density S, with 

proportionality constant c-2. For discussing the momentum flow, we consider the expression 
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Consequently, we can write the th component as 
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A completely analogous result for the magnetic field is given by 
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With these relations, the integrand in the equation of the rate of change of mechanical 

momentum can be expressed as the divergence of a tensor 
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With the definition of the Maxwell stress tensor T as 

  




    BBEE 22

2
1 cBBcEET o , 
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we can have 

   












V S

fieldmech danTrdT
xdt

d

dt
d









3PP
 

where n means the th component of the unit normal vector (direction cosine) perpendicular 

to the area da. Evidently, the term 


 nT is the th component of the flow per unit area of 

momentum across the surface S into the volume V. In other words, it is the force per unit area 

transmitted across the surface S and acting on the combined system of particles and fields 

inside V. Therefore, it can be used to calculate the forces acting on material objects in 

electromagnetic fields by enclosing the objects with a boundary surface S. Explicitly, the 

Maxwell stress tensor can be expressed in matrix form as 
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The trace of the Maxwell stress tensor Tr(T) is equal to the negative of the electromagnetic 

energy density, -u. 

A similar result can be obtained for the angular momentum of the fields. Starting from 

the definition of the mechanical torque 
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mech rd
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d 3BJEr
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With the previous result of 
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we can obtain 
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Defining 

 
VV fieldfield rdrd 33 grL L  

we can get 

  
V

fieldmech rd
dt

d

dt
d 3Tr

LL 
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Since )()( rTTr 


, we can define )( rTM 


 and  V mechmech rd 3LL  to 

obtain 
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fieldmech
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Poynting’s theorem for Harmonic fields 

For harmonic time variation of the fields, all fields and sources are assumed to be have a time 

dependence e-it; therefore we write  

   tititi eeet  )()(
2
1)(Re),( rΕrΕrΕrE

    

The field )(rΕ


 is in general complex, with a magnitude and phase that change with position. 

For product forms, such as ),(),( tt rErJ
  , we have 

  
 ti

titititi

e

eeeett





2)()()()(Re
2
1                        

)()()()(
4
1),(),(









rΕrJrΕrJ

rΕrΕrJrJrErJ





. 

For time averages of products, the convention is therefore to take one-half of the real part of 

the product of one complex quantity with the complex conjugate of the other. For harmonic 

fields, the Maxwell equations become 

JDHD

BEB






i

i

;

0;0
, 

where all quantities are complex functions of r, according to the form  tiet  )(Re),( rΕrE


. 

Now considering the average of the product  
V

xd 3EJ  and using the time-harmonic 

Maxwell equations, we obtain 

   
V

V
rdixd 33

2
1

2
1 EDHEJ  . 

Adding a null term 0)(  HBE i  to the integrand of the right-hand side of the 

equation, we obtain 

 












V

V
V

rdi

rdiixd

3

33

)()(
2
1                        

)(
2
1

2
1

HBDEHE

HBEEDHEJ




 

We now define the complex Poynting vector  
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  HES
2
1  

and the harmonic electric and magnetic energy densities 

     HBDE
4
1,

4
1

me ww . 

Then we can obtain 

   

V S
meV

dardwwixd 0)(2
2
1 33 nSEJ   

It is a complex equation whose real part gives the conservation of energy for the 

time-averaged quantities and whose imaginary part relates to the reactive or stored energy and 

its alternating flow. If the energy densities we and wm have real volume integrals, as occurs for 

systems with lossless dielectrics and perfect conductors, the real part of the equation becomes 

  

S
V

daxd 0)Re()Re(
2
1 3 nSEJ . 

This result shows that the steady-state, time-averaged rate of doing work on the sources in V 

by the fields is equal to the average flow of power into the volume V through the boundary 

surface S, as calculated from the normal component of Re(S). 

The question of magnetic monopoles 

So far, there is no experimental evidence for the existence of magnetic charges or monopoles. 

Nevertheless, there is a great interest in magnetic monopoles, because on the one hand, 

electrodynamics would become very symmetric in it structure and on the other hand, the mere 

existence of a simple monopole would lead necessarily to the quantization of the electric 

charge. The quantization of the electric charge in units of the elementary charge e (the charge 

of the electron) is a great mystery of physics, and its relationship to the existence of magnetic 

monopoles was pointed out for the first time by Dirac (Phy. Rev. 74, 817, 1984). Let us 

suppose that there exist magnetic charge and current densities, m and Jm, in addition to the 

electric densities, e and Je. The Maxwell equations are then given by 
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where there are two continuity equations  
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In other words, the charge conservation holds for both kinds of charges. Although one might 

expect that the new Maxwell equations can have some physical effects different from those of 

the known, this is not the case. Consider the following duality transformation:  
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For a real angle , such a transformation leaves quadratic forms like HE , ΒHDE  , 

and the components of the Maxwell stress tensor Tuv to be invariant. If the sources are 

transformed in the same way, 
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one can find that the Maxwell equations are valid unchanged for ),,,( HDBE  . 
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This demonstrates the invariance of the new Maxwell equations mentioned above under dual 

transformations. This also indicates that to a great extent it is a question of convention what 

one calls the magnetic charge of a particle. If all particles had the same ratio of magnetic to 

electric charge, the angle  could be chosen such that  
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For this special angle , the new Maxwell equations turn into the old, well-known Maxwell 

equations. Then, one would fix the charge of the electron, by convention: qe(electron)=e 

and qm(electron)=0. The charges of all other elementary particles could then be measured with 

these units. For example, for the proton on finds with a precision of ~10-20: qe(proton)=e 

and qm(proton)=0. This high precision for the vanishing magnetic charge is based on the fact 

that the magnetic field intensity of the earth at its surface amounts to 1 gauss only. Otherwise, 

it would have to be much larger if qm(proton)0  

    Now, we discuss the Dirac’s idea on the relation between charge quantization and the 
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existence of magnetic monopoles. Let a magnetic charge g at the origin produce the magnetic 

induction 

34
)(

r
g rrB



. 

at the point r. The )(rB  field follows from m B  if )(rgm    is a point-like 

density. Let a particle with the charge e and the velocity zv ev   pass by along a straight 

line with an impact parameter b. This particle experiences the Lorentz force  

  2/322 )(4 vtb
bg

evFy





, 

The momentum transmitted by this force is 
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eg
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evpy  2)(4 2/322



 



 . 

This momentum transfer leads to a change in the angular momentum 

2
eg

pbL yz 
. 

Now, according to quantum mechanics, the orbital angular momentum is always quantized: 

 ,2,1,0,  nnLz ,  

Consequently,  
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The spatial average of a function F with respect to a test function f is given by 

  rdtrrFrftrF 3),()(),(


.  Based on the definition, it can be shown that 
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With the property that the operations of space and time differentiation can commute with 

average operation, we can obtain 
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As far as the result of the averaging process is concerned, the molecule can be viewed as a 

collection of point multipoles located at one fixed point in the molecule. The detailed extent 

of the molecular charge distribution is important at the microscopic level, of course, but is 



25 
 

replaced in its effect by a sum of multipoles for macroscopic phenomena. 
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where  is macroscopic charge density 
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Macroscopic displacement vector is defined as 
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Chapter Eight: Plane Electromagnetic Waves and Propagation 

Plane wave in uniform materials 

To separate E and B from Maxwell’s equations, we employ the usual trick by taking curl of 

the curl equations: 
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Using the constitutive relations for linear materials with EJ   and ED  , Eq. (1) can be 

rewritten as 
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In the absence of free charges, 0 E , and assuming time harmonic varying fields 

ti
o e  )(rEE  , the derivative t /  can be replaced with –i to obtain 
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Following the same steps, we can derive the same equation for H: 
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Plane wave in linear isotropic conductors 

In linear isotropic conductors, the fields satisfy Eqs. (3) and (4) together with the constitutive 

relations ,, HBED    and EJ  . The solutions can be expressed as the form of a 

damped plane wave 
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where the wave vector k is a complex vector with the dispersion relation 
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We set the amplitude of the complex wave vector to be 
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 ik   .              (8) 
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where the parameter  is related to the effective wavelength for an electromagnetic wave 

propagating through the conductor and the parameter  is known as the attenuation constant 

or absorption coefficient. Then, after some algebra, we can show that 
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For good conductors,   , the parameters  and  can be given by 
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   ,               (11) 

 2  .              (12) 

Substituting Eq. (8) into the solutions in Eqs. (5) and (6), we obtain 
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The wave decays exponentially along its path. The penetration depth known as the skin depth 

is given by  /2 . At microwave frequencies (10 GHz), the skin depth can be 

approximately given by μm92.0/2   , where 117 m103  . Therefore, 

constructing microwave components of silver is usually to thinly electroplate them with silver 

to a thickness of several skin depths.  

    The electric and magnetic fields are not independent but are related by Maxwell’s 

equations. The divergence equations lead the plane waves to be subject to 

0 oEk ,                (15) 

0 oHk .                (16) 

These two equations imply that the wave vector k is perpendicular to each of E and H. The 

curl equations give  
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In terms of E, we can take H as the form 
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The time averaged Poynting vector can be evaluated from the complex fields as 
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Similarly, the energy density is calculated as 
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The wave properties for waves in a homogeneous conductor can now be expressed in terms of 

the medium’s properties as: 
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where the near equality in each of the four expressions above holds for good conductors only 

(   ). Under the circumstance of   , the time averaged Poynting vector in Eq. 

(20) can be used to express the power transported by a plane wave through a conductor: 

 rα eHS
da

dP
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2

2

1
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Plane wave in linear isotropic dielectrics 
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In dielectrics, the fields satisfy the homogeneous wave equations 
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t

E
E   ,             (1) 
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t

H
H   .             (2) 

Here we use H instead of B because of the increased symmetry in the constitutive relations, 

ED   and HB  , and because of the more parallel boundary conditions: ||E  and ||H  

are continuous; D  and B  are continuous. The simplest solutions for the pair of Eqs. (1) 

and (2) are  

 )( ti
oe

 rkEE  ,              (3) 

 )( ti
oe

 rkHH  ,              (4) 

where 22 k . The solutions in Eqs. (3) and (4) are not independent but are linked by 

Maxwell’s equations. The divergence equations lead the plane waves to be subject to 

0 oDk ,                (5) 

0 oBk .                (6) 

These two equations imply that the wave vector k is perpendicular to each of D and B. The 

curl equations give  

oo HEk  ,               (7) 

oo EHk  .               (8) 

These two equations imply that E and H are perpendicular to each other. For isotropic media 

E is parallel to D, and B is parallel to H. We may therefore conclude that the wave vector k, 

the normal to the surface of constant phase, is parallel to the Poynting vector HES  . In 

other words, for isotropic media the direction of energy propagation is along k. It is worth 

while to note that this conclusion does not hold for anisotropic media, in which S is 

perpendicular to E whereas k is perpendicular to D. 

 

Snell’s law for reflection and refraction 

Let us consider a plane wave with wave vector ki incident on a plane interface, giving rise to a 

reflected wave with wave vector kr and a transmitted wave with wave vector kt, as shown in 

Figure.  
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At a point r on the interface, the parallel component of the electric field must be the same on 

both sides of the interface. Therefore 

  )(
,

)(
,

)(
,

ti
to

ti
ro

ti
io

tri eneen    rkrkrk EEE .      (9) 

Equation (9) can be reduced as   

 rkkrkk EEE   )(
,

)(
,,

irit i
ro

i
toio eenn .        (10) 

Obviously, the phase factor needs to be zero for satisfying the continuous condition at all r on 

the interface; that is, 

 0)(  rkk it  ,              (11) 

 0)(  rkk ir  .              (12) 

Equation (12) implies that  

 rrii kk  sinsin   .              (13) 

Since the incident and reflected waves are both in the same medium, the magnitudes ki and kr 

are equal,  

 riri   sinsin  .            (14) 

The angle of incidence is equal to the angle of reflection. Equation (11) implies that 

 ttii kk  sinsin   .              (15) 

In optics, Eq. (15) can be in terms of the refractive index to be given by 

 ttii nn  sinsin   .              (16) 

It is apparent that Snell’s law is a consequence only of the plane wave nature of the 

disturbance and the requirement of continuity.  
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Fresnel’s equation 

To derive the amplitude ioE , , roE , , and toE ,  of the incident, reflected, and transmitted 

wave, we need to use the boundary conditions in more detail. First of all, it is necessary to 

decompose E into two components, one labelled pE , parallel to the plane of incidence, and 

the other labelled sE , perpendicular to the plane of incidence. The plane of incidence is 

defined by n and k; the subscript s comes from senkrecht, German for perpendicular, and the 

p stands for parallel. The two components are now handled separately.  

    When the wave is s-polarized, the electric field is perpendicular to the plane of incidence 

and the magnetic field lies in the plane of incidence, as shown in Fig. (a). The boundary 

conditions for ||E  and ||H  to be continuous lead to  

 tri EEE   ,              (17) 

ttrrii HHH  coscoscos   .          (18) 

From Eq. (7), the magnitudes of H and E in dielectrics are related by an vEkEH  //  . 

Using ncv /  and substituting for H in Eq. (18), we obtain 
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coscos   .           (19) 

Equations (17) and (18) can be solved for rE  and tE  to lead to 
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When the wave is p-polarized, the electric and magnetic fields are parallel and 

perpendicular to the plane of incidence, respectively, as shown in Fig. (b). The boundary 

conditions for ||E  and ||H  to be continuous lead to  

 tri HHH   ,              (22) 

ttrrii EEE  coscoscos   .          (23) 

Using the same derivation, we have 
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Note the difference between sr , st  and pr , pt . For dielectrics of optical interest, o  . 

As a result, the permeabilities   in Eqs. (20), (21), (24) and (25) can be cancelled. Using 

Snell’s law to eliminate the ratios of refractive indices, Eqs. (20), (21), (24) and (25) can be 

simplified as the Fresnel equations: 
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  .       (26) 

Another expressions for sr , st , pr , and pt  are obtained by eliminating the angle of 

transmission t  with  nn itt /sinsin1cos 222   , where it nnn / . 

Consequently, 
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    At normal incidence the amplitude reflection coefficients reduce to  

 
n
nrs 


1
1  and 

n
nrp 


1
1  .            (31) 

As there is no difference between an s and p wave at normal incidence, the difference in sign 

appears due to the difference of the choice for positive iE  and rE in Figures (a) and (b). As 

usual, for n > 1, both correspond to a change in sign of the electric field when a wave is 

reflected. 

    Form Eq. (26), it is clear that if the incident angle of the p-wave satisfies 2/  ti , 

then the amplitude of the reflected wave is zero. This implies that it  cossin  . With Snell’s 

law, it can be shown that this incident angle is called Brewster’s angle B  and is given by 

 
i

t
B n

ntan  .               (32) 

Brewster's angle (also known as the polarization angle) is an angle of incidence at which light 

with a particular polarization is perfectly transmitted through a transparent dielectric surface, 

with no reflection. When unpolarized light is incident at this angle, the light that is reflected 

from the surface is therefore perfectly polarized. This special angle of incidence is named 

after the Scottish physicist Sir David Brewster (1781–1868). 
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The physical mechanism for this can be qualitatively understood from the manner in 

which electric dipoles in the media respond to p-polarized light. One can imagine that light 

incident on the surface is absorbed, and then reradiated by oscillating electric dipoles at the 

interface between the two media. The polarization of freely propagating light is always 

perpendicular to the direction in which the light is travelling. The dipoles that produce the 

transmitted (refracted) light oscillate in the polarization direction of that light. These same 

oscillating dipoles also generate the reflected light. However, dipoles do not radiate any 

energy in the direction of the dipole moment. Consequently, if the direction of the refracted 

light is perpendicular to the direction in which the light is predicted to be specularly reflected, 

the dipoles cannot create any reflected light. 

When ti nn  , i.e. n < 1, there is a critical angle beyond which the sine of i  exceed n 

and both sr  and pr  become complex numbers of unit magnitude. The coefficients now give 

the phase change of the wave on reflection. This phase change can be evaluated by re-writing 

Eqs. (27) and (29) as 
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We can express si
s er   and pi

p er   with 
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Each of the waves is totally internally reflected but suffers a phase shift that differs for the 

two polarizations. 

Goos and Hänchen Effect 

In 1943, Goos and Hänchen (Ann. Physik 1, 333, 1947) devised an experiment to show 

that what happens at total reflection if the incident wave penetrates into the medium of lower 

index and reemerges into the medium of higher index. Goos and Hänchen reported the first 

experimental evidence of the displacement of a light beam upon total internal reflection. This 

displacement, called the Goos-Hänchen (GH) shift, is perpendicular to the direction of 

propagation of the reflected beam in the plane of incidence, as shown in Fig. .  
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If we took the incident beam to be a single plane wave, then it would be impossible to 

determine the GH shift. We use the same theoretical formulation as Hora (H. Hora, Optik 

(Stuttg.) 17, 409, 1960) and Renard (R. H. Renard, J. Opt. Soc. Am. 54, 1190, 1964) using a 

Debye-Picht wave packet (P. Debye, Ann. Phys. (Leipz.) 30, 755, 1909; J. Picht, Ann. Phys. 

(Leipz.) 77, 685, 785, 1925) for the incident beam. Thus, we require that the incident beam (1) 

have a half-width W which is as small and as nearly constant as possible along the beam, (2) 

make an angle o with respect to the x axis, and (3) be focused on the origin (x =0, z = 0). The 

Debye-Picht wave packet meets these requirements accidentally well. We take as the wave 

packet for the incident beam 
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where  should be chosen sufficiently small and o sufficiently large such that o- exceeds 
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the critical angle. The reflected wave function is given by 
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where )(  is given by Eq. (35) and Eq. (36) for s-wave and p-wave, respectively. Changing 

the variable of o   and using small angle approximation, we can express the 

following terms as 

 oo  sincoscos   , 

 oo  cossinsin   , 

 
o

d

d
o






 )()(   . 

With these expressions, the reflected wave function can be rewritten as 
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where  /2 11 nk  . Carrying out the integration, the reflected wave function is given by 
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The property of the function sin(x)/x indicates that the reflected intensity is mainly 

concentrated on the line equation of 

   1/)(cossin kzx ooo    . 

Therefore, the GH shift can be evaluated as 

 1/)( kD o  . 

With Eq. (35), we can show that 
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where 12 / nnn   and we have used the property of )1/(1/][tan 21 uduud   and the chain 

rule for the result of   )/()](1/[1/)(tan 21 dyduyudyyud  . Note that 11 / n   is the 

wavelength in the medium of higher index of refraction. Similarly, we can use Eq. (36) to 

show that 
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The GH effects originate from the dispersion of the reflection or transmission coefficients, as 

was first shown by Artmann in 1948 (K. Artmann, Ann. Phys. 2, 87, 1948). For the past few 

decades, the spatial GH shift has been studied in a variety of systems (Nature Photon. 3, 337, 

2009; PRA 25, 2099, 1982; PRL 68, 931, 1992; PRL 70, 2281, 1993; PRL 75, 1511, 1995; 

PRL 91, 133903, 2003; PRL 92, 193902, 2004; PRL 102, 146804, 2009; PRL 104, 010401, 

2010) embracing plasmonics, metamaterials, and quantum systems. 

 

Frequency dispersion characteristics of dielectrics and conductors 

In reality all media reveal some dispersion. Only over a limited range of frequencies, or in 

vacuum, can the velocity of propagation be treated as constant. There are no dispersive effects 

for a single frequency component. However, when a superposition of a range of frequencies 

occurs, dispersive effects arise as a result of the frequency dependence of  and . Here a 

simple model of dispersion is developed to examine some of these consequences. For 

simplicity, we neglect the difference between the applied electric field and the local field.  

The equation of motion for an electron of charge –e bound by a harmonic force and acted 

on by an electric field ),( trE  is 

  ),(2 tem o rErrr     , 

where  measures the phenomenological damping force and magnetic force effects are 

neglected. If the field varies harmonically in time with frequency  as tie  , the dipole 

moment contributed by one electron is 

 )(1
22

2

rErp
 im

ee
o 

  . 

If we assume that there are N molecules per unit volume with Z electrons per molecule, and 
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that, instead of a single binding frequency for all, there are jf  electrons per molecule with 

binding frequency j  and damping constant j , then the dielectric function is given by 
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where the oscillator strengths jf  satisfy the sum rule 

 Zf
j

j   . 

With suitable quantum-mechanical definitions of jf , j , and j , this simple model is an 

accurate description of atomic contribution to the dielectric function.  

    We employ this dielectric model to discuss the anomalous dispersion and resonant 

absorption. Since the damping constants j  are generally small compared with the binding 

or resonant frequencies j , the factor 22  j  is positive for j   and negative for 

j  . Therefore, at low frequencies, below the smallest j , all the terms in the sum in the 

dielectric function contribute with the same positive sign and o /)(  is greater than unity. 

As successive j  values are passed, more and more negative terms occur in the sum, until 

finally the whole sum is negative and o /)(  is less than one. In the neighborhood of any 

j , there is rather violent behavior. The real part of the denominator in the dielectric function 

vanishes for that term at j   and the term is large and purely imaginary. Normal 

dispersion is associated with an increase in )](Re[   with , anomalous dispersion with the 

reverse. Normal dispersion is seen to occur everywhere except in the neighborhood of a 

resonant frequency. Only where there is anomalous dispersion is the imaginary part of  

appreciable. Since a positive imaginary part to  represents dissipation of energy from the 

electromagnetic wave into the medium, the region where )](Im[   is large are called 

regions of resonant absorption.  

The attenuation of a plane wave is most directly expressed in terms of the real and 

imaginary parts of the wave number k. If the wave number is given by  
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2

 ik  , 

then the parameter   is known as the attenuation constant or absorption coefficient. The 

intensity of the wave falls off as )exp( z . With 22 k , the connection between ),(   

and )Im,(Re  is given by 
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If   , as occurs unless the absorption is very large or Re  is negative, the attenuation 

constant   can be written approximately as 

 
 
  


Re
Im  , 

where   co //Re    . The fractional decrease in intensity per wavelength divided by 2 

is then given by the ratio     Re/Im .  

    In the limit 0  there is a qualitative difference in the response of the medium 

depending on whether the lowest resonant frequency is zero or not. For insulators the lowest 

resonant frequency is different from zero. If some fractions of the electrons per molecule are 

free in the sense of having 0j , the dielectric function is singular at 0 . If the 

contribution of the free electrons is exhibited separately, the dielectric function becomes 
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where )( b  is the contribution of all the other dipoles. The singular behavior can be 

understood as follows. Assuming that the medium obeys Ohm’s law EJ   and has a 

normal dielectric constant b , one of the Maxwell equations with harmonic time dependence 

is given by 

 obo

i
i EH 






 


  . 

If we did not insert Ohm’s law explicitly but attributed instead all the properties of the 

medium to the dielectric function, this equation can be expressed as 

 oo i EH )( . 
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Compared with these two representations, the conductivity can be deduced as 
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  . 

This is originally the model of Drude (1900) for the electrical conductivity, with oNf  being 

the number of free electrons per unit volume in the medium. The damping constant oo f/  

can be determined empirically from experimental data on the conductivity. For copper, 

28108N  atoms/m3 and at normal temperatures the low-frequency conductivity is 

7109.5   (·m)-1 . This gives 13104/ oo f  s-1. Assuming that 1of , this shows 

that up to frequencies well beyond the microwave region ( 1110 s-1) conductivities of 

metals are essentially real (implying current in phase with the field) and independent of 

frequency.  

    At frequencies far above the highest resonant frequency the dielectric function takes on 

the simple form 

 2

2

1
)(





 p

o

  , 

where mZNe op  /22   . The frequency p , which depends only on the total number NZ of 

electrons per unit volume, is called the plasma frequency of the medium. For a typical metal 

like copper ( 28108NZ  atoms/m3), we get 15105.22/  ppf  Hz, corresponding to 

a wavelength of 0.12 m. Experimentally, light in the visible region are reflected from metal 

surfaces. Above the plasma frequency, the metal becomes transparent to ultraviolet light with 

wave length shorter than 0.12 m. For semiconductor such as indium antimonide (InSb) with 

24102NZ  atoms/m3 , there are drastic changes in reflectance at the expected plasma 

frequency of 131022/  ppf . In the high frequency limit p  , o /  is real and 

there in no attenuation for wave propagation. The wave number and wavelength can be 

expressed as  

 22//2 pockc    . 

With this result, the dispersion relation is known as 

 2222 kcp   . 
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    An important application is the ionosphere above the surface of the earth. In the 

ionosphere, the electrons are free and the damping is negligible. The height and intensity of 

ionosphere change with the hour of the day, the season of the year, and the sunspot cycle, etc. 

It is approximately a layer (known as the F-layer) extending from 100 km to 300 km above 

the earth. Inside the F-layer, the electron density is about 12102  m-3 in the daytime and 

11103  m-3 at night. The plasma frequencies are 13 MHz and 5 MHz. in daytime and at night. 

There is also a lower layer, known as the E-layer, extending from approximately 60 to 100 km 

above the earth with electron density lower by about a factor of 10. AM radio stations 

broadcast in the frequency range of 0.5 to 1.6 MHz. These radio waves are reflected by the 

ionosphere. At night, the electron density is lower due to the absence of solar radiation and 

solar wind bombardment, and the ionosphere is higher above the surface of the earth. It is 

possible to pick up faraway radio stations since the radio signal can travel longer distances by 

reflecting off higher ionosphere layers.  

 

Manifestation of the pulse spreading in a dispersive medium 

We consider a specific model to derive the property of a pulse propagating in a dispersive 

medium. Considering a real 1D time-dependent wave packet ),( tx , it can be expanded with 

the pane waves as 

 ..)(
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  . 

It can be shown that )(kA  is given in terms of the initial values by 
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For simplicity, we assume 0/)0,(  tx  and consider a Gaussian modulated oscillation  

 )cos()0,(
22 2/ xkex o
Lx  

as the initial shape of the pulse. This Gaussian modulated wave function means that at times 

immediately before t = 0 the wave consisted of two pulses, both moving toward the origin, 

such that at t = 0 they coalesced into the modulated shape. It is clearly expected that at later 

times each pulse will remerge on the other side of the origin. The normalization can be found 

to be 

 )1(
2

|)0,(|
222 LkoeLdxx 
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The Fourier component )(kA  for this Gaussian modulated wave is  

  2/)(2/)(2/ 222222

2
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2
1)( oo kkLkkL

o
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The symmetry )()( kAkA  is a reflection of the presence of two pulses traveling away from 

the origin. To consider the essential dispersive effects exactly, we assume  
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where o  is a constant frequency and a is a constant length that is a typical wavelength 

where dispersive effects become important. The time-dependent wave function is given by 
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The integration can be performed as follows: 
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. 

This equation represents two pulses traveling in opposite directions. The peak amplitude of 

each pulse travels with the group velocity oog kav 2 , while the modulation envelop 

remains Gaussian in shape. The width of the Gaussian is not constant, however, but increases 

with time. The width of the envelop is 
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   2/1222 )/(1)( LtaLtL oeff   . 

Thus the dispersive effects on the pulse are greater for a given elapsed time, the sharper the 

envelope. The criterion for a small change in shape is that L>>a. Even so, at long time the 

width of the Gaussian increases linearly with time LtatL oeff /)( 2 . Note that the time of 

attainment of this asymptotic form depends on the ratio L/a.  

There is an interesting analogy with the paraxial propagation of a Gaussian beam. The 

Fourier transform of a Gaussian beam is expressed as 

 4// 2222

22
1

2

1)( xoox kwwxxik

o

ewdxee
w

kA 



  


, 

where ow  is the beam waist of the Gaussian beam. Considering the paraxial propagation of a 

Gaussian beam, the space evolution is given by  
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Analogous to the time evolution, we can make the replacement of 2/owL , zt  , 

kao /12  , 0ok  to obtain the variation of the beam spot with z 

   2/122)/2(1)( ooeff kwzwzw   . 

 

Causality in the connection between D and E (nonlocality in time) 

First of all, there are two properties to remind for discussing the causality. One is that if the 

function )(tf  is real, then the complex conjugate of the Fourier transform of )(tf  satisfies 

 )()(
2
1)(

2
1)( 


  




 











 FdtetfdtetfF titi  . 

The other is that if the transform )()()(  GFH   is the product of the two transforms F 

and G, then the inverse transform of H is given by the convolution of the two inverse 

transforms of F and G. Suppose f, g, and h are the inverse transforms of F, G, and H. Then we 

can derive this property as follows: 
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Based on the linear response, the relationship between the Fourier transforms of ),( rD  and 

),( rE  can be given by 

 ),()(),(  rErD   . 

In terms of the susceptibility 1]/)([)(  oe  , the relationship can be rewritten as  

  ),()(),(  rErD eoo  . 

Taking the inverse Fourier transform, the relationship between ),( trD  and ),( trE  can be 

shown to include the form of the convolution  

 



  




 dtGtt o ),()(),(),( rErErD  , 

where the susceptibility kernel )(G  is given by 

 




 


  deG i
e )(

2
1)(  . 

The form of the convolution gives a nonlocal connection between ),( trD  and ),( trE , in 

which ),( trD  at time t depends on the electric field ),( trE  at times other than t. If )(  

is independent of  for all , the susceptibility kernel )(G  becomes a constant times a 

delta function )(  and the instantaneous connection is obtained. In contrast, if )(  

varies with , )(G  is nonvanishing for some values of  different from zero. 

    To manifest the character of the connection implied by )(G  and the form of the 

convolution, we consider a one-resonance version of the index of refraction: 
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The susceptibility kernel )(G  for this model is given by 
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The integral can be evaluated by contour integration. The integrand has poles in the lower 
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half-plane at 

 2/ iR   , 

where 4/222   oR . For 0  the contour can be closed in the upper half-plane without 

affecting the value of the integral since the integrand is regular inside the closed contour, the 

integral vanishes. This means that at time t only values of the electric field prior to that time 

enter in determining the displacement, in accord with our fundamental ideas of causality in 

physical phenomenon. For 0  the contour is closed in the lower half-plane and the 

integral is given by i2  times the residues at the two poles. To be brief, causality requires 

that the transform have no poles in the upper half-plane. For a single oscillator, the 

susceptibility kernel )(G  can be evaluated as follows: 
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where )(u  is the unit step function; 0)( u  for 0  and 1)( u  for 0 . It can be 

seen that the kernel )(G  is oscillatory with the characteristic frequency of the medium and 

damped in time with the damping constant of electronic oscillators.  

 

Kramers-Kronig (K-K) relations (Dispersion relations) 

In the 1920s, H. A. Kramers and R. de L. Kronig discovered how to use the property of 

analyticity to relate the real and imaginary parts of the dielectric function of a material, thus 

deriving relations that relate the dispersive and absorptive properties of a material in its 

interaction with electromagnetic waves. The K-K relations are a specific example of a more 

general class of relations called dispersion relations. In recent years, these relations have 

proved important in other branches of physics as well such as in particle physics.  

Assume a function )(zf  is analytic everywhere in the upper half-plane. The first 
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Cauchy formula can be used to express the value of the function at a point oz  in terms of an 

integral around a curve C that surrounds oz : 

 


C o
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 , 

where both oz  and C are in the upper half-plane. Now if 0|)(| zf  as z , we may 

choose C to be a large semicircle with its flat side along the real axis. Since the integral along 

the curved part is zero, we have 
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 . 

Now we let the point oz  approach the x-axis from above. The path of integration must 

remain below the pole, so we put a small semicircle under the pole and obtain 
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Consequently, 
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Similarly, we can obtain the same result by letting the point oz  approach the x-axis from 

below. The path of integration is above the pole, so we put a small semicircle above the pole 

and obtain 
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Therefore, it is clear that the real and imaginary parts of )(xf  are related by 
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Since the dielectric function of any material approaches o  at very high frequencies, the 

function 1/)()(  of   definitely approaches zero at high frequencies. The real and 

imaginary parts can be related by 
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These relations are called Kramers-Kronig relations or dispersion relations. They were fisrt 

derived by H. A. Kramers (1927) and R. de L. Kronig (1926) independently. The symmetry 

property )()(    shows the )(Re   is even in , while )(Im   is odd. The 

integrals can thus be transformed to span only positive frequencies: 
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These relations indicate that measurements of the absorption properties of a material 

determine the dispersion and vice versa.  
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Chapter Nine: Waveguide and resonators 

Practically, it is not possible to maintain the electric field and the magnetic field each 

perpendicular to the direction of propagation. Bounded electromagnetic waves are usually 

classified as transverse electric (TE) and transverse magnetic (TM). Travelling waves are 

bounded either by being enclosed within metallic waveguides or guided by dielectric rods. 

Furthermore, standing waves are usually confined in metallic cavities or dielectric resonators. 

In the case that the dimensions of the guide are much larger than the wavelength, the 

propagation of waves can be regarded as simply a plane wave reflecting successively from the 

walls either by metallic reflection for metal waveguides, or total internal reflection for 

dielectric waveguides.  

    We now consider electromagnetic waves in the hollow space enclosed by a waveguide. 

Assuming time harmonic varying fields tie HE,  and considering the source free region 

with ED  , we have 

0 E ,               (1) 

0 B  ,               (2) 

BE i  ,               (3) 

EB i  .              (4) 

Here it is worthwhile to note the symmetry of the equations in exchanges BE   with 

  . As seen earlier, the curl-curl operation on Maxwell’s equations can lead to 

 022  EE   ,             (5) 

  022  BB   .             (6) 

Assuming that waves propagate in the z direction, the fields may be written in Cartesian 

coordinates as  

 )(),(),( tzki zeyxt  ErE  ,            (7) 

 )(),(),( tzki zeyxt  BrB  .            (8) 

For convenience, we set 

 222
zt   ,              (9) 

 
2

2

2

2
2

yxt 



  .              (10) 

In terms of 2
t  and substituting Eqs. (7) and (8) into Eqs. (5) and (6), we obtain 
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   0),(222  yxkzt E  ,           (11) 

    0),(222  yxkzt B .            (12) 

    Next, the two curl equations in (3) and (4) are used to show that the electromagnetic field 

can be entirely determined by the longitudinal components zE  and zB  from which the 

transverse components tE  and tB  can be derived. The longitudinal components zE  and 

zB  can be expressed to satisfy a simple scalar wave equation and appropriate boundary 

conditions. We use zt  , zt EEE  , and zt BBB   to express Eq. (3) as 

      ztztzt i BBEE    .          (13) 

In the z-direction, we have 

 ztt i BE   .              (14) 

In the xy-plane, we have 

 ttzzt i BEE   .            (15) 

Similarly, we can use Eq. (4) to obtain 

 ttzzt i EBB   .           (16) 

We multiply Eq. (15) from the left by  z  and obtain 

   tztzztz i BEE    .          (17) 

Using the relation “curl curl = grad div minus div grad ” with a triple vector product  

CBABCACBA )()()(             (18) 

taking care of the ordering, Eq. (17) can be rewritten as 

       tztztzzztzzzt i BEEEE  2  .     (19) 

The second and third terms on the left of Eq. (19) are scalar products of orthogonal vectors 

and therefore have no contributions. Consequently, we can use Eq. (16) to eliminate the term 

tz B  and obtain 

   tzttzzzt i EBEE  22   .        (20) 

To replace zz ik , Eq. (20) can be expressed as  

 ztzztztz BiEikk  aE  )( 22  .         (21) 

Due to the symmetry of BE   and    in the Maxwell equations (3) and (4), we 

also have 
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  ztzztztz EiBikk  aB  )( 22  .        (22) 

Equations (21) and (22) clearly indicate that the transverse components are entirely 

determined by the longitudinal components. Therefore, we have to consider only the 

z-component of Eqs. (11) and (12): 

   0),(222  yxEk zzt   ,           (23) 

    0),(222  yxBk zzt  .           (24) 

The solutions of Eqs. (23) and (24) are solved with the boundary conditions corresponding to 

a perfect conductor-dielectric interface, namely 0Bn  and 0En , where n is the unit 

vector normal to the surface. Note that since surface charges and surface currents are allowed 

to occur, we are not able to make direct statements on Dn and Ht. The boundary condition 

0En  at the walls is just 0
SzE .  On the other hand, the boundary condition 

0Bn  at the walls is equivalent to 0
StBn . Substituting Eq. (22) into 0

StBn , we 

obtain 

  0
)()(

1
2222 







Szt
z

z
Sztzztz

z
St B

k
ik

EiBik
k

nanBn





. (25) 

Here we have used the fact that ztz Ea  is tangential to the surface S and therefore 

0)(  ztz Ean . The boundary condition in Eq. (25) can be manifestly expressed as 

 0



S

z
Szt n

B
Bn  .             (26) 

The two-dimensional wave equations (23) and (24) for zE  and zB , together with the 

boundary conditions at the cylindrical surface, form an eigenvalue problem. For a given 

frequency , only definite longitudinal wave numbers kz obey the differential equation and 

boundary conditions. According to the boundary conditions, we can distinguish the fields as 

transverse magnetic (TM) modes and transverse electric (TE) modes. For TM waves, the 

longitudinal electric field zE  is a solution of Eq. (23) subject to the boundary condition 

0
SzE , while the longitudinal magnetic field zB  vanishes everywhere (this trivially 

satisfies the wave equation in Eq. (24) for zB  as well as the boundary condition 

0/ 
Sz nB ) . B has only transverse components. For TE waves, the longitudinal magnetic 
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field zB is a solution of Eq. (24) subject to the boundary condition 0/ 
Sz nB , while the 

longitudinal electric field zE  vanishes everywhere. E has only transverse components.     

In terms of E and H, Eqs. (21) and (22) are usually expressed as 

 ztzztz
z

t HiEik
k




 aE 
 )(

1
22  ,  

  ztzztz
z

t EiHik
k




 aH 
 )(

1
22  . 

Example 

Find the dispersion and cutoff frequencies for the TM and TE modes of a rectangular cross 

section waveguide of sides a and b. 

Solution 

For a TM mode, 0zB  and zE  satisfies 

   0),(22  yxEk ztt  

where 222
zt kk    is used for brevity. The general solution can be expressed as 
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with 22222
ztyx kkkk    and the braces are used to indicate the arbitrary linear 

combination of terms enclosed. Applying the boundary conditions 0
SzE , we can reduce 

the solution to 
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The dispersion relation for the m, n mode then becomes 
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When ])/()/[( 2222 bnamc   , zk  becomes imaginary, leading to an exponentially 

damped wave. The cutoff frequency for the waveguide carrying the m, n mode is 
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In terms of zE  and using 0zB , the remaining components of the field are easily obtained 

with 

 zt
z

z
t E

k
ik 



)( 22

E  

and  

 ztz
z

t E
k

i 


 aH
)( 22

  . 

For TE modes, the boundary conditions 0/ 
Sz nB  can be used to obtain 
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coscos),(

,
,  . 

All other parts can be evaluated with the same procedures for deriving the TM modes.  

 

Isosceles right triangular waveguide 

A square waveguide, ba  , has a further type of degeneracy, since the TMmn and TMnm 

modes have the same transverse wavenumber, as do the TEmn and TEnm modes. By suitable 

linear combinations of these degenerate modes, it is possible to construct the mode functions 

appropriate to a guide with a cross section in the form of an isosceles right triangle. The mode 

function, 
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describes a possible TM mode in a square waveguide, with the transverse wavenumber 

 22 nm
a

kt    . 

The function thus constructed vanishes on the line xy   as well as the boundaries 0y , 

ax  , and therefore satisfies all boundary conditions for a TM mode in an isosceles right 

triangular guide, as shown in Fig. . Note that the function ),( yxmn vanishes if nm  , and 

that therefore an interchange of the integers produces a trivial change in sign of the function. 

Hence the possible TM modes of an isosceles right triangular waveguide are obtained from 

),( yxmn  with the integers restricted by nm 0 . Thus the dominate TM mode 

corresponds to 1m , 2n .  

The mode function 
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describing a possible TE mode in the square waveguide, has a vanishing derivative normal to 

the line xy  : 

 0),(
2
1),( 















 yx

yx
yx

n mnmn   , xy  ,  

and therefore satisfies all boundary conditions for a TE mode in an isosceles right triangular 

guide under consideration with the transverse wavenumber 

 22 nm
a

kt    . 

Note that the function ),( yxmn  is symmetrical in the integers m and n, and therefore the 

possible TE modes of an isosceles right triangular waveguide are obtained from ),( yxmn  

with the integers restricted by nm 0 , but with 0 nm  excluded. Thus the dominate 

TE mode corresponds to 0m , 1n . 

 

Circular waveguide 

    For cylindrical waveguides we express the z component of the fields in terms of the 

polar coordinates,  and .  As before, the z component of the fields satisfies the equation 

   0),(22  tt k  . 

where  represents zE  for TM modes or zH  for TE modes. In polar coordinates, the 

equation is given by 

 0),(11 2
2

2

2 























 




 tk  . 

Separating variables and applying a periodic boundary condition to the azimuthal component, 

it can be found that 

  
m

im
m eR  )(),(  , 

with m an integer. The radial function )(mR  satisfies Bessel’s equation  

 0)(1 2
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The general solution is given by the form 

 )()()(  tmmtmmm kNBkJAR   . 

The radial equation can be put in a standard form by the change of variable kx  . The 
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equation becomes 
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This is the Bessel equation and the solutions are called Bessel functions of the order m. With 

the approach of power series solution, the Bessel function can be found to be given by 
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These solutions are called Bessel functions of the first kind of order m . The series 

converge for all finite values of x. If m is not an integer, these two solutions )(xJ m  form a 

pair of linearly independent solutions to the second-order Bessel equation. For the potential to 

be single-valued when the full azimuthal is allowed, m must be an integer. Under this 

circumstance, it is well known that the solutions are linearly dependent. Actually it can be 

shown that 

 )()1()( xJxJ m
m

m  .             (9) 

In general, no matter what m is, the second solution is replaced by the Neumann function: 

 


m

xJmxJ
xN mm

m sin
)(cos)(

)(  .           (10) 

The solutions )(xJm  and )(xNm  are called Bessel functions of the second kind.  

The Bessel functions of the third kind, called Hankel functions, are defined as linear 

combinations of )(xJm  and )(xNm : 

)()()(

)()()(
)2(

)1(

xiNxJxH

xiNxJxH

mmm
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 .           (11) 

The Hankel functions form a fundamental set of solutions to the Bessel equation, just as do 

)(xJm  and )(xNm . 

   The other solution in the separation of The Laplace equation is given by Eq. (4). The 

function )(zZ  would have been kzsin  or kzcos  and the equation for )(R  would have 

been:  
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With kx  . The equation becomes 
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The solutions of this equation are called modified Bessel functions. It is evident that they are 

just Bessel functions of pure imaginary argument. The usual choices of linearly independent 

solutions are denoted by )(xIm  and )(xKm . They are defined by 

 )()( ixJixI m
m

m
  ,             (14) 

 )(
2

)( )1(1 ixHixK m
m

m
                (15) 

and are real functions for real x and m. 

 Another representation for the Bessel functions is based on the generating function. The 

generating function of the Bessel functions of integral order is given by  
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Using 2/)(sin  ii eei  , the left-hand side of Eq. (1) can be derived as 
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where the binominal expansion has applied to the term  nii ee    in the derivation. 

Changing the index n in Eq. (2) as jnm 2 , the expansion in Eq. (2) can be written as  
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In comparison with Eq. (1), the Bessel function is given by  
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   .          (4) 

This result is the same as Eq. (7) in the above section. Differentiating Eq. (1) partially with 

respect to , we have 
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Substituting in Eq. (1) and equating the coefficients of like terms of ime , we obtain the result 
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Consequently the first recurrence relation can be expressed as 

)(2)()( 11 


 mmm JmJJ    .            (6) 

Similarly, differentiating Eq. (1) partially with respect to , we have 
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Substituting in Eq. (1) and equating the coefficients of like terms of ime , we obtain the result 
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Consequently the second recurrence relation can be expressed as 

)(2)()( 11  mmm JJJ    .           (8) 

Suppose we consider a set of function )(xv  which satisfies the basic recurrence relations 

(Eqs. (6) and (8)), but with v not necessarily integer and )(xv  not necessarily given by the 

series Eq. (4). Subtracting Eq. (8) from Eq. (6) and dividing by 2 yields 

 0)()()( 1   xxxvxx vvv  ,          (9) 

where the index has been changed as )( vm  . Adding Eq. (6) and Eq. (8) and dividing by 2, 

the result can be rewritten )( vm   as  

 0)()()( 1   xxxvxx vvv  .          (10) 

On differentiating with respect to x, we have 

 0)()()()1()( 11   xxxxvxx vvvv  .       (11) 

Multiplying by x and then subtracting Eq. (10) multiplied by v gives us 

 0)()()1()()()( 1
2

1
22   xxxvxxvxxxx vvvvv  .    (12) 

Now we write Eq. (9) and replace v by v-1: 

 0)()()1()( 11   xxxvxx vvv  .         (13) 

Adding Eqs. (12) and (13) for eliminating )(1 xv  and )(1 xv , we finally get 

   0)()()( 222  xvxxxxx vvv  .         (14) 

This is just Bessel’s equation. Hence any functions, )(xv , that satisfy the recurrence 

relations Eqs. (6) and (8) satisfy Bessel’s equation. In other words, the unknown )(xv  are 

Bessel functions. In particular, we have shown that the functions )(mJ , defined by the 

generating function, satisfy Bessel’s equation. If the argument is k rather than x, Eq. (14) 

becomes 
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The generating function in Eq. (1) can be linked to the 2D plane wave:    
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From the Fourier transform, we have  
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Combining Eqs. (16) and (17), we have 
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Using the orthonormal property 
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we can obtain 
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Since the Fourier series gives 
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we have 
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Equivalently, we have 
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   .          (23) 

If there is a boundary condition 0)( kaJm  for a finite interval a 0 , then the 

parameter k should be quantized as 

 axk mnmn /  ,               (24) 

where mnx  is the nth zero of mJ . The solutions are expected to be orthogonal. The 

demonstration starts with the differential equation satisfied by )/( axJ mnm  : 



11 
 

 01
2

2

2

2












































a
xJm

a

x

d
a

xJd

d
d

mnm
mn

mnm 







 .       (25) 

Changing the parameter mnx  to nmx  , we find that )/( axJ nmm   satisfies 
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We multiply Eq. (25) by )/( axJ nmm    and Eq. (26) by )/( axJ mnm   and subtract, 

obtaining 
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Integrating from 0  to a , we obtain 
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Upon integrating by parts in the right-hand side of Eq. (28), we have 
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For 0m  the factor  guarantees a zero at the lower limit, 0 . At a , each 

expression on the right-hand side of Eq. (29) vanishes because the parameters mnx  and nmx   

are roots of mJ . Therefore, for nn    
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This gives us orthogonality over the interval [0, a]. The normalization integral may be 

developed by rewriting Eq. (29) as 

 
       











































mnm

nmm
nmnmm

mnm
mn

mnnm

a

nmmmnm

xJ
xd

xJd
xxJ

xd

xJd
x

xx
a

d
a

xJ
a

xJ

22

2

0


 .    (30) 

Setting  mnnm xx , and taking the limit 0 , we have 
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With the aid of the recurrence relation Eq. (9), this result can be also written as 
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The behavior of )(mJ  near the origin is indicated by the first term of the form of the power 

series: 
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The form of the Neumann functions near the origin can be given by 
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The values of the Bessel and Neumann functions for sufficiently large magnitudes of  are 

can be expressed as 
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Since the radial function must be well behaved at 0 , the coefficients mB  need to be 

zero, giving 

  
m

im
tmm ekJA  )(),(  . 

For TM modes, 0zH  and ),( zE . At a , the waveguide wall, zE  must vanish, 

implying that 0)( akJ tm  . The argument akt  must therefore be a root of the Bessel 

function mJ . Let the nth root be mnx . Substituting for tk , we obtain the z component of the 

electric field for the ),( nm  mode 
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The transverse fields can be obtained as 
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The dispersion relation is given by 

 22222 )/( axkk mntz    . 

When 22 )/( axmn , zk  becomes imaginary and the wave no longer propagates. The 

various field components of a TMm,n mode are given by 
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The TM0,1 mode in particular has 405.21,0 x . With 10 JJ  , we have 
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The cutoff wavelength can be found to be aaxc 61.2)//(2 1,0   . 

    The TE modes have 0zE  and  im
tmmz ekJAH  )( . The boundary condition 

requires that 0)(  akJ tm . The argument akt  must therefore be a root of the first derivative 

Bessel function mJ  . Let the nth root be mnx . Substituting for tk , we obtain the z component 

of the magnetic field for the ),( nm  mode 
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The various field components of a TEm,n mode are then given by 
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The roots for a few values of m and n are tabulated below: 
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It can be seen that the smallest root of the Bessel function derivatives mJ  , is the first root of 

1J  , 841.11,1 x . The mode with the lowest cut-off frequency is therefore the TE1,1 mode. The 

fields for the TE1,1 mode are given by 

  i
oz e

a

x
JHH 








 
 1,1

1),(  

 














 











 


 





 


 aaE ii
ot e

a

x
J

a

x
e

a

x
JiH

x

ai 1,1
1

1,11,1
12

1,1

2

),(   

 














 








 





 





 


 aaH ii
o

z
t e

a

x
Jie

a

x
J

a

x
H

x

aik 1,1
1

1,1
1

1,1
2

1,1

2

),(  . 

The cutoff wavelength can be found to be aaxc 41.3)//(2 1,1   . Because 10 JJ  , the 

roots of 0J   coincide with those of 1J , leading to a degeneracy of the TM1,n modes and  

modes TE0,n modes. 

    Unlike the rectangular guide, the transverse wavenumbers of the TM and TE modes do 

not coincide. Explicit formula for the two types of roots can be obtained from the Bessel 

function asymptotic formulae: 
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Energy flow and group velocity in wave guides 

    The expressions for both TM and TE waves can be used to discuss the flow of energy 

along the guide and the attenuation of the waves due to losses in the walls having finite 

conductivity. For TM modes, the fields can be expressed as 
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Substituting these expressions into the complex Poynting vector, we can obtain 
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Similarly, the fields and the complex Poynting vector for TE modes can be given by 
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Since the wave function  is generally real, the transverse component of S represents reactive 

energy flow and does not contribute to the time averaged flux of energy. On the other hand, 

the axial component of S gives the time-averaged flow of energy along the guide. The total 

power flow over the cross-section area A can evaluated with integrating the axial component 

of S: 
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Using Green’s first identity applied to two dimensions, the total power flow can be written as 
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where the second integral is around the curve C, which defines the boundary surface of the 

cylinder. This integral vanishes for both types of field because of boundary conditions. By 

means of the wave equation, we have  22
tt k  and 22

tz kkk  . the first integral can 

be reduced to the normalization integral for :  
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The field energy per unit length of the guided wave can be evaluated in the same way. The 

energy density is given by 
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Integrating the density for all the transverse plane, the field energy per unit length of the 

guided wave along z-axis for TM mode is then given by 
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Similarly, we have 

  
A

t
A TMTE da

k
kdauU

2

2

2

2
1   

It can be found that P and U are proportional with the constant to be just the group velocity: 
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Note that 22
tzk   . It is clear that gv  is always less than the velocity of waves in 

an infinite medium and falls to zero at cutoff. The product of phase velocity and group 

velocity is constant:  

 /1pgvv  . 

This is an immediate consequence of the fact that zz kk  .  
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Example 

Calculate the power transported by a TMm,n wave in a rectangular waveguide of sides a and b. 

Estimate the power loss in the walls, assuming ohmic losses. Use these results to find the 

attenuation length of the waveguide. 

Solution 

For a TMm,n mode, 0zB  and zE  is given by 
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The power transported by a TMm,n wave can be evaluated as 
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We proceed to find the power dissipated in traveling along the waveguide. To do so, we 

require ||H  at each of the walls. The magnetic field in the cavity is given by 
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Along the bottom wall, 0y , ||H  is given by 
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The power dissipation along the bottom wall is 
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The top wall gives an identical result. On the side wall at 0x , we have 
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and the power dissipated on the side wall is 
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Again, the right hand wall at ax   gives the same result. Adding all four terms, we have 
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Finally, the attenuation constant can be derived as 
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is a dimensionless number of the order unity, tt  /2  is the skin depth at the cutoff 

frequency, )(2 baC   is the circumference, and abA   is the area of cross section. 

Example 

Calculate the power transported by a TEm,n wave in a rectangular waveguide of sides a and b. 

Estimate the power loss in the walls, assuming ohmic losses. Use these results to find the 

attenuation length of the waveguide. 

Solution 

For a TEm,n mode, 0zE  and zB  is given by 
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The power transported by a TEm,n wave can be evaluated as 
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We proceed to find the power dissipated in traveling along the waveguide. To do so, we 

require ||H  at each of the walls. The magnetic field in the cavity is given by 
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Along the bottom wall, 0y , ||H  is given by 
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The power dissipation along the bottom wall is 
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The top wall gives an identical result. On the side wall at 0x , we have 
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and the power dissipated on the side wall is 
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Again, the right hand wall at ax   gives the same result. Adding all four terms, we have 
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Thus, the attenuation constant can be derived as 
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This result can be further rewritten as 
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are dimensionless numbers of the order unity, tt  /2  is the skin depth at the cutoff 

frequency, )(2 baC   is the circumference, and abA   is the area of cross section. 
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Resonant cavities 

The modes of resonant cavities are easily obtained by using linear combinations of waves 

traveling in the z  direction. For perfectly conducting plates at 0z  and dz  , there 

are additional boundary conditions on H and E, namely 0tE  and 0zH . The latter 

implies for TE modes that  

 )/sin(),( dzpyxH z  . 

For TM modes, 0tE  on the end walls give 0//  zEnE zz  using an argument 

similar to that used for treating 0tH  on the side walls for TE modes. Thus, the TM cavity 

mode is given by 

 )/cos(),( dzpyxEz  . 

For the cavity mode, the formula  
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need to be modified with replacing zk  by z / : 
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As a result, the transverse fields for TM modes with )/cos(),( dzpyxEz   in the cavity 

become: 
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Similarly, the transverse fields for TE modes with )/sin(),( dzpyxH z   in the cavity 

become: 
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Resonant frequencies for a cylindrical cavity 

The resonant frequency for the TM mode in a cylindrical waveguide is given by 
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The lowest frequency is given by 0m , 1n , 0p . This is called the TM010 mode. The 

corresponding frequency is 

 
a
405.21

0,1,0 
   . 

Note that this frequency is independent of d. Thus one cannot tune such a mode with a piston 

which changes the length of the cavity. 

    The resonant frequency for the TE mode in a cylindrical waveguide is given by 
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The lowest frequency is given by 1m , 1n , 1p . This is called the TE111 mode. The 

corresponding frequency is 
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For 03.2/1/ da  this TE111 mode is the overall lowest or fundamental mode. Note also that 

this frequency depends on da /  and can therefore be easily tune by using a piston. 

 

Formation of guided waves 

 

    Optical fibers and optical waveguides consist of a core, in which light is confined, and a 
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cladding, or substrate surrounding the core, as shown in Fig.. The refractive index of the core 

n1 is higher than that of the cladding no also higher than that of the substrate ns. Therefore the 

light beam that is coupled to the end face of the waveguide is confined in the core by the total 

internal reflection. Assuming os nnn 1 , the condition for the total internal reflection at the 

core-substrate interface is given by snn  )2/sin(1  , where the angle  is related to the 

incident angle  by  sinsin 1n . As a result, we obtain 22
1sin snn   and the critical 

condition for the total internal reflection as 

 22
1maxsin snn   .             (1) 

For the case of optical fibers, os nn  , the refractive-index difference between core and 

cladding is of the order of 01.01  onn . Then max  in Eq. (1) can be approximated by 

 22
1max onn   .              (2) 

The value of max  denotes the maximum light acceptance angle of the waveguide and is 

known as the numerical aperture (NA).  

 

   We have accounted for the mechanism of the mode confinement and have indicated that 

the angle  must not exceed the critical angle. Although the angle  is smaller than the critical 

angle, light rays with arbitrary angles are not able to propagate in the waveguide. Each mode 

is associated with light rays at a discrete angle of propagation, as given by electromagnetic 

wave analysis. Let us consider a plane wave propagating along the z-direction with inclination 

angle . The wavelength and the wavenumber of light in the core are 1/ n  and kn1 , 

respectively, where  is the wavelength of light in vacuum. The propagation constants along z 

and x are expressed by 

 cos1 knkz   ,              (3) 

 sin1 knkt   .              (4) 

From the Fresnel’s law, the reflection coefficient of the reflected TE wave is given by   
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where t  is the inclination angle of the refracted beam. The Snell’s law gives 

zts kknkn   coscos 1 .  As a consequence, ts kn sin  for the totally reflected light can 

be expressed as 

 2222
1

2222 )()()(sin tsszzsts kknniknkikknkn   .     (6) 

Substituting Eq. (6) into Eq. (5), the reflection coefficient of the reflected TE wave is given by 
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  .            (7) 

Expressing the complex reflection coefficient r as )exp( sir  , the amount of phase shift 

s  is given by 

 










 
 

t
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s k

kknn 2222
11 )(

tan2  .          (8) 

Now the phase difference between the two light rays belonging to the same plane wave 

in Fig. 2 is considered. Light ray PQ, which propagates from point P to Q, does not suffer the 

influence of reflection. On the other hand, light ray RS, propagating from point R to S, is 

reflected two times (at the upper and lower core-cladding interfaces). Since points P and R or 

points Q and S are on the same phase front, optical paths PQ and RS should be equal, or their 

difference should be an integral multiple of 2. Using the fact that the distance between points 

Q and R is  tan2tan/2 aa  , the distance between points P and Q is given by 

  







 


 sin2

sin
12costan2tan/21 aaad  .       (9) 

The distance between points R and S is given by 

 
sin

2
2

ad   .               (10) 

The phase matching condition for the optical paths PQ and RS then becomes 

   mdkndkn os 21121   ,           (11) 

where m is an integer. Substituting Eqs. (4) and (8-10) into Eq. (11) we obtain the condition 

for the propagation angle  as 
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Planar Optical Waveguides 

    Planar optical waveguides are the fundamental elements to construct integrated optical 

circuits and semiconductor lasers. In general, rectangular waveguides consist of a square or 

rectangular core surrounded by a cladding with lower refractive index than that of the core. 

Although three-dimensional analysis is necessary to explore the transmission characteristics, 

two-dimensional slab waveguides are often used to acquire a clear insight into optical 

waveguides. 

   Taking into account the effect of refractive index in dielectric optical waveguides, the two 

curl Maxwell’s equations for E and H are given by 

to 
 H

E   ,              (1) 

t
n


 E

H 2  .              (2) 

Assuming that waves propagate in the z direction of the slab waveguide, the fields may be 

written in Cartesian coordinates as  

 )(),(),( tzki zeyxt  ErE  ,            (3) 

 )(),(),( tzki zeyxt  HrH  .            (4) 

Substituting Eqs. (3) and (4) into Eqs. (1) and (2), we obtain the following set of equations: 
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For the slab waveguide, as shown in Fig., E and H do not have y-axis dependency. Therefore, 

we can set 0/  yE  and 0/  yH . Substituting these relations into Eqs. (5) and (6), 

electromagnetic waves inside the waveguide can be decomposed into two independent modes 

that are denoted as TE mode with 0zE  and TM mode with 0zH . The TE mode can be 

found to satisfy the wave equation only in terms of yE : 

   0222
2

2
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y Eknk

xd

Ed
 ,            (7) 

where 22 koo   
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z
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k
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  ,              (8) 
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  ,              (9) 

and 

 0 yxz HEE  .              (10) 

Since the electric field lies in the plane that is perpendicular to the z-axis, this electromagnetic 

field distribution is called transverse electric (TE) mode. Furthermore, the tangential 

components yE  and zH  should be continuous at the boundaries of two different media. 

  On the other hand, the TM modes satisfies the wave equation only in terms of yH : 
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where 22 koo   
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  ,              (13) 

and 

 0 yxz EHH  .             (14) 

Since the magnetic field lies in the plane that is perpendicular to the z-axis, this 

electromagnetic field distribution is called transverse magnetic (TM) mode. 

   Propagation constants and electromagnetic fields for TE and TM modes can be obtained 

by solving Eq. (7) or (11). Let us consider the slab waveguide with uniform refractive index 

profile in the core, as shown in Fig.. Since the guided electromagnetic fields are confined in 

the core and exponentially decay in the cladding, the electric field distribution for TE mode is 

expressed as 
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where tk , o , and s  are wavenumbers along the x-axis in the core and cladding regions 

and are given by 
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zt knkk   ,              (16) 
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2222 )( tsszs knnknkk   ,          (17) 

 222
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2222 )( toozo knnknkk  .          (18) 

The electric field component yE  in Eq. (15) is continuous at the boundaries of core-cladding 

interfaces ax  . Another boundary condition is that the magnetic field component zH  

should be continuous at the boundaries. As given by Eq. (9), the boundary condition for zH  

is equivalently treated by the continuity condition of dxdEy /  as 
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From the conditions that dxdEy /  are continuous at ax  , we obtain 

 stt akk   )tan(  ,             (20) 

ott akk   )tan(  .             (21) 

Consequently, we obtain the eigenvalue equations as 
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In terms of the normalized frequency 
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1 snnkav                 (24) 

and the parameters  
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and  
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 ,               (26) 

the wavenumbers tk , o , and s  can be expressed as 

  bvakt  1  ,              (27) 

 bvas   ,               (28) 

   bvao .              (29) 

The parameter b is called the normalized propagation constant. The parameter  is for a 

measure of the asymmetry of the cladding refractive indices. Substituting Eqs. (27)-(29) into 

Eq. (22), the eigenvalue (dispersion) equations can be rewritten as 
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For the symmetrical waveguides with so nn  , we have 0  and the dispersion equations 

in (30) and (31) are reduced to 
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 m  .               (33) 

From Eq. (30), the normalized propagation constant b can be calculated for each normalized 

frequency v for the given -value. The v-b relationship is therefore called dispersion curve. 

With the calculated b-value, the transverse wavenumber tk is then obtained by using 

bvakt  1  in Eq. (27) and the propagation constant zk is found by 

)/( 222222
1

2 avbnkknkk stz   .         (34) 

The value of 2/cv  gives the cutoff normalized frequency for the 1m  mode. Generally 

the cutoff v-value for the TEm mode is given by Eq. (30) with 0b as 

   1
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2
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2
 mv TEc  .            (35) 

    Based on Eq. (11), the dispersion equation for the TM mode can be obtained in a similar 

manner to that of the TE mode. The magnetic field can be given by 
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Another boundary condition is that the magnetic field component zE  should be continuous 

at the boundaries. As given by Eq. (13), the boundary condition for zE  is equivalently 

treated by the continuity condition of 2/)/( ndxdH y  as 
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 .      (37) 

From the conditions that 2/)/( ndxdH y  are continuous at ax  , we obtain 
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Consequently, we obtain the eigenvalue equations as 
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In terms of the normalized propagation constant b and the normalized frequency v, Eq. (40) 

can be reduced to 
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Rectangular waveguides 

Here we use the analytical method proposed by Marcatili (“Dielectric rectangular 

waveguide and directional coupler for integrated optics”, Bell Syst. Tech. J. 48, 2071-2102, 

1969) to deal with the three-dimensional optical waveguide, as shown in Fig. . The important 

assumption of Marcatili’s method is that the electromagnetic field in the shaded area can be 

neglected since the electromagnetic field of the well-guided mode decays quite rapidly in the 

cladding region. Then the boundary conditions for the electromagnetic field in the shaded area 

are not imposed. 

 

We first consider the electromagnetic mode in which xE  and yH are predominant. When 

we set 0xH  in Eqs. (5) and (6), the Maxwell’s equations become 
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With Eqs. (43) and (44), the electromagnetic field representation and the wave equation can 

be derived as 
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and 
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On the other hand, when the electromagnetic mode in which yE  and xH are predominant, 

we set 0xH  in Eqs. (5) and (6) to simplify the Maxwell’s equations as 
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and 
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With Eqs. (43) and (44), the electromagnetic field representation and the wave equation can 

be derived as 
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and 
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Since xE  and yH are the predominant electromagnetic fields, the modes in Eqs. (45) 

and (46) are described as x
pqE , where p and q are integers. On the other hand, the modes in 

Eqs. (49) and (50) are called y
pqE  because yE  and xH are the predominant electromagnetic 

fields. Next, we use the separation of variables to find the solution of the wave equation. 

Considering the electromagnetic mode in which xE  and yH are predominant, the solution in 

Eq. (46) can be expressed as  

 )()(),( yYxXyxH y   .             (51) 

Substituting Eq. (52) into Eq. (46), the wave equation in the core region can be expressed as 

two independent wave equations as 
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Here the transverse wavenumbers xk  and yk  satisfy   
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1

222
zyx knkkk   .             (54) 

On the other hand, the wave equation outside the waveguide can be expressed as two 

independent wave equations as 

 02
2

2

 X
xd
Xd

x  ,              (55) 



35 
 

 02
2

2

 Y
yd
Yd

y  ,              (56) 

where the transverse wavenumbers x  and y  are given by   
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22 )( yoy knnk   ,             (58) 

The solution fields of Eqs. (52) and (55) are given by 
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where only the first quadrant is considered due to the symmetry of the waveguide. The optical 

phases x  and y  are expressed by 

 ,2,1,0,2/  ppx              (61) 

 ,2,1,0,2/  qqy   .           (62) 

Using the boundary conditions that the electric field )/)(/( 2 xHniE yoz    should be 

continuous at ax   and the magnetic field )/)(/( yHkiH yzz   should be continuous at 

dy  , we obtain the following dispersion equations: 
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    In order to find the dispersion equation for the y
pqE  mode, the magnetic field xH  is 

given by the same equations in (51), (59) and (60). Applying the boundary conditions, we can 

obtain the following dispersion equations 
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Radiation field from waveguide 

    The radiation field from an optical waveguide into free space propagates divergently. 

The radiation field is different from the field in the waveguide. Therefore it is important to 

know the profile of the radiation field for efficiently coupling the light between two 

waveguides or between a waveguide an optical fiber.  

    For the end face of a waveguide at z = 0, the electric field at the end face is denoted by 

)0,,( yxg  . By the Fresnel-Kirchhoff diffraction formula, the radiation field on the 

observation plane at a distance z is related to the field )0,,( yxg   as 
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where n is the free-space refractive index, k is the free-space wavenumber, and the distance r 

between )0,,( yx   and ),,( zyx  is given by 

   2/1222 )()( zyyxxr   .           (2) 

When the distance of the observation plane z is very large compared with || xx   and 

|| yy  , Eq. (2) can be approximated by 
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The number of expansion terms to approximate r accurately depends on the distance z 

between )0,,( yx   and ),,( zyx . Generally, the electromagnetic field in the waveguide is 

confined in a small area of the order of 10 m. Therefore if z is larger than, for example, 1 

mm, any term higher than the fourth term in the right-hand side of Eq. (3) can be neglected. 

Under this circumstance, the radiation field is called in the far-field region or Fraunhofer 

region. On the other hand, when z is not so large, the fourth term in Eq. (3) should be taken 

into account. Under this condition, the radiation field is called in the near-field region or 
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Fresnel region. However, it should be noted that even the Fresnel approximation is not 

satisfied in the region close to the end face of the waveguide. In general, the contribution to 

rnk  by the fourth term, )2/( 22 zyxnk   determines whether the Fresnel or Fraunhofer 

approximation should be used. With  )2/( 22 zyxnk  as the measure for the optical 

filed confined in the rectangular region with square core area d2, then we have the criteria 
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In the Fraunhofer region, Eq. (1) can be simplified as  
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It is known that the radiation field ),,( zyxf  in the Fraunhofer region is a spatial Fourier 

transformation of the field profile )0,,( yxg   at the end face of the waveguide. 

 

Gaussian Beam 

Here we consider the propagation property of a Gaussian beam. The Gaussian profile for 

the field )0,,( yxg   can be given by 
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where A is a constant and oxw  and oyw  are the spot sizes of the field along the x- and y- axis 

directions, respectively.  Substituting Eqs. (3) and (6) into Eq. (1), we have 
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where the Fresnel approximation to r has been used. Since the integral in Eq. (7) for x  and 

y  has the same form, detailed calculation only for x  is descried. The integral with respect 

to x  in Eq. (7) becomes 
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We further introduce new variables: 
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With Eqs. (9)-(12), Eq. (8) can be expressed as 
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Similarly, the integral with respect to y in Eq. (7) is given by 
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where the parameters are defined as 
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    Substituting Eqs. (13) and (14) into (7), the radiation pattern of the Gaussian beam is 

given by 
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Eq. (19) reveals that )(zwx  and )(zwy  represent the spot size of the Gaussian beam, and 

)(zRx  and )(zRy  represent the radii of curvature of the wavefronts, respectively. When 

ooyox www   for a symmetric Gaussian beam, Eq. (19) can be expressed as 
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where the parameters are defined as 
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    We can use the propagation properties of the Gaussian beam to analyze the mode size of 

the spherical resonators. In a stable linear spherical resonator, the Gaussian beam will adapt 

itself to the resonator mirror configuration. In other words, the equiphase contours )(zR  

should match the mirror radii of curvature. For instance, if the resonator has a flat front mirror 

and a curved rear mirror, then the beam waist of the Gaussian beam (where )(zR ) will 

be at the flat mirror and the radius of beam curvature )(LR  at the rear mirror will be equal to 

the curvature of the rear mirror 2R . For a cavity with two curved mirrors, the Gaussian beam 

will adapt itself so that both mirror curvatures match the curvature of the Gaussian beam at 

the mirrors. This property makes it relatively straightforward to calculate the beam waists and 

curvatures inside the laser resonator. Based on this criteria, consider a laser with two curved 

mirrors, where the beam waist is defined at z = 0 with a distance of 1L  to mirror 1R  and 2L  

to mirror 2R . Assume that both mirrors 1R  and 2R  have positive values for the curvatures 

and both distances 1L  and 2L  are positive such that LLL  21 . Under this circumstance, 

the beam radii on the two mirrors are given by 
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Changing variables 
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Schrodinger harmonic oscillator 

0)1(2

)()(0)(

2
,)()(

2

1

2

2

2

2/2
2

2

22
2

22

2

























nn
nn

nnnn

n
n

nnn

H
d

dH

d

Hd

eH
d

d

E
x

m
xExxm

dx

d

m




















 

Generating function for Hermite polynomials 
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Exploiting the off-axis Gaussian beam to derive the propagation of high-order Hermite 

Gaussian modes   
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Using generating function again to identify each term to correspond to the beam propagation 

of the specific high-order Hermite Gaussian mode  
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The eigenmodes for a spherical cavity with the front mirror of a radius of curvature 1R  at 

1zz   and the rear mirror of a radius of curvature 2R  at 2zz   are given by 
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The overall cavity length is given by 12 zzL  . Note that the coordinates of the cavity setup 

are 12 zz  . The Rayleigh range Rz  is determined with the following equations: 
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With the above two equations and 12 zzL  , we have 
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The ratio and the sum of the above two equations leads to 

 
1

2

2

1

z

z

LR

LR





 , 

 21
212 )(

zz
L

LRR
zR


  

After simple algebra, we have 
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Consequently, the mode sizes on the waist, the front mirror, and the rear mirror are  
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The expression of the wave function ),,,()(
,, tzyxHG
lmn  satisfies one of the boundary 

conditions at 1zz  , i.e. 0),,,( 1
)(

,,  tzyxHG
lmn . To determine the eigenvalues lmnk ,, , we use 

the periodic condition that  
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After simple algebra, we have 
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Now we simplify the term in the square brackets. First of all, the addition formulas of 

trigonometric functions can be used to show 
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Then, we can use 
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As a result, we have  
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In terms of the g-parameters,  
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The eigenvalues lmnk ,,  can be given by 
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with the ratio of the transverse to longitudinal mode spacing as  21
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Analogy with quantum mechanics 

Considering a 1D quantum system with potential as shown in Fig., the eigenvalues and 

eigenfunctions can be solved with the Schrodinger equation.    
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With the Schrodinger equation, the wave function is expressed as 
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where k , o , and s  are wavenumbers along the x-axis in the well and outside regions 

and are given by 
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The wave function )(x  in Eq. (1) is continuous at the boundaries of well interfaces 

ax  . Another boundary condition is that the derivative of the wave function dxd /  

should be continuous at the boundaries:  
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From the conditions that dxd /  are continuous at ax  , we obtain 
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oakk   )tan(  .             (7) 

Consequently, we obtain the eigenvalue equations as 

 
















 

kk
mak os  11 tan

2
1tan

2
1

2
 ,         (8) 

 
















 

kk
m os  11 tan

2
1tan

2
1

2
 .          (9) 

In terms of the normalized parameter 
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and the parameters  
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and  
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the wavenumbers tk , o , and s  can be expressed as 
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Substituting Eqs. (13)-(15) into Eqs. (8) and (9), the eigenvalue (dispersion) equations can be 

rewritten as 
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For the symmetrical well with so VV  , we have 0  and the dispersion equations in (16) 

and (17) are reduced to 
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From Eq. (16), the normalized confined energy b can be calculated for each normalized 

parameter v for a given -value. The v-b relationship is therefore called dispersion curve. With 

the calculated b-value, the wavenumber k is then obtained by using bvak  1  in Eq. 

(13). The value of 2/cv  gives the cutoff normalized frequency for the 1m  mode. 

Generally the cutoff v-value for the eigenmode is given by Eq. (16) with 0b as 
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The eigenmodes for a plano-concave spherical cavity between z =0 and z = L are given by 
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Chapter Ten: Electromagnetic Radiation 

The inhomogeneous wave equation 

With the Lorenz gauge condition, the equations for  and A can be written 

otc 
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2 1

. 

In order to relate the radiation fields to the sources, it is usually needed to solve the 

inhomogeneous wave equations for the potentials. The two equations are not independent 

because  and J are related by the continuity equation. The electric and magnetic fields may 

be obtained from the solutions of the equations as 

 
t

 A
E  , 

 AB  . 

In practice it is sufficient to evaluate A since B may be found directly as its curl, and outside 

the source, E may be obtained from B.  

Both wave equations have the same form as 
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One commonly useful method of solving the wave equation is based on the Fourier analysis 

to deal with only one frequency component. After the single-frequency solution has been 

found, the time dependent solution can be found by summing the frequency components. 

With the Fourier transform, the source function ),( tf r  and the frequency spectrum ),( rF  

can be related by 
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In the same way, the solution  can be expressed as 
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Substituting the Fourier components into the wave equation, we obtain 
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where k = /c. The solution of this equation can be synthesized with the Green’s function that 

satisfies the equation 

 )(4),()( 22 rrrr  kGk  . 

It is clear that the Green’s function that is the solution of the unit point source. The frequency 

component ),( r  of the total solution of the source function ),( tf r  can be found by 

integrating all point source solutions with the appropriate weight ),( rF : 
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The Green’s function ),( rr kG  can be conveniently found by using the property of the 

spherical symmetry about r . Denoting the distance from the source by || rr R , the 

Green’s function at points other than 0R  must satisfy 
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It is well known that the solution of this equation is given by 
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Thus the general solution for the Green function can be expressed as  
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In the limit of 0R , the wave equation reduces to the Poisson equation, since 1kR . 

With the help of )(4)/1(2 RR  , the coefficients of A and B need to satisfy 1 BA  . 

We further evaluate ),( r  
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The time-dependent solution ),( tr  can be obtained by taking the inverse Fourier transform 
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With the definition of 
c

tt
|| rr   , the solution is rewritten as 
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. 

Physically, the term with the + sign (the retarded solution) states that the present potential at r 

was caused by the source a travel time R/c earlier. The term with the – sign (the advanced 

solution) means that the current potential depends on the behavior of the source in the future 

at cRtt / .  

Spherical wave solutions of the scalar wave equation 

Spherical harmonic expansions for the solutions of the Laplace or Poisson equations were 

employed in potential problems with spherical boundaries or to develop multipole expansions 

of charge densities and their fields. We extend spherical harmonic expansions to the 

development of spherical wave solutions of the scalar wave equation for radiating sources. 

    A scalar field (r,t) satisfying the source-free wave equation is given by 
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With the Fourier transform, the solution  can be expressed as 
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Substituting the Fourier components into the wave equation, we obtain 

 0),()( 22  kk r  , 

where k = /c. For problems possessing symmetry properties about some origin, it is 

convenient to have fundamental solutions appropriate to spherical coordinates. The separation 

of the angular and radial variables follows the expansion 
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The radial functions )(rfl  satisfy the radial equation, independent of m,  
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With the substitution,  
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Eq. () is transformed into 



4 
 

 0)(
)2/1(1 2

2

2

2

2









 ruk

r
l

dr
d

rdr
d

l  . 

This equation is just the Bessel equation with 2/1 lm . Thus the solution for )(rfl  are 
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The solutions are customarily expressed as spherical Bessel and Hankel functions, denoted by 

)(xjl , )(xnl , )()2,1( xhl , as follows: 
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It can be further shown that 
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For the first few values of l the explicit forms are given by 
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the small argument limits are given by 
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Similarly the large argument limits are 
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The spherical Bessel functions satisfy the recursion formuals, 
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The Wronskians of the various pairs are 
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The general solution for the Helmholtz equation  
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in spherical coordinates can be written  
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where the coefficients mlA ,  and mlB ,  are determined by the boundary conditions. 

    The outgoing wave Green function ),( rr kG , which is appropriate to the equation, 
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is given by 
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The spherical wave expansion for ),( rr kG  can be obtained in exactly the same way as was 

done for the Poisson equation. Thus the expansion of the Green function is 
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Radiation from a localized oscillating source  

With a system whose charges and currents varying in time, we can deal with each Fourier 

component separately. Therefore we lose no generality by considering potentials, fields, and 

radiation from localized systems to be sinusoidal in time.  We take care 
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where J and  are required to satisfy the continuity equation 
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The vector potential arising from the time harmonic source is then 
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With the expansion 
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the general expression for the vector potential when rr   becomes 
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into the general expression for the vector potential, we can write Eq. () as 
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If the source dimensions are small compared to the wavelength ( 1rk ) , we can use  
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Note that the condition 1rk  includes the important example of an atom of typical 

dimensions 0.1 nm radiating visible light of wavelength 500 nm. In the near zone (also called 

the induction zone) with rr  , we can use 
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The form is just the expansion of the static solution. 

Next we can discuss the first terms of )(rA  for the localized source in detail. For 
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0  , the 0l  term yields 
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It can be shown that this term arises from the dipole component of the charge distribution. For 
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1  , the 1l  term yields 
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Again we can relate the expression more directly to moments of the charge and current 

distributions.   

 

For a localized oscillating source, the vector potential is given by 
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Using Taylor series expansion, we can express the term in the integrand as 
































 







 







 


































 








 











 




t
c
rt

cr
c
rt

rr
c
rt

c
t

r
c
rtc

t

,
1

,
)(

,
                           

,

)(
,,

2

rJrJ
rr

rJ

rr

rr
rJ

r
rJ

rr

rr
rJ

rrr  

As a consequence, the vector potential can be given by  
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The first-order and second-order terms are respectively expressed as   
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Radiation from an oscillating electric dipole 

The first-order term ),()0( trΑ  represents the radiation from an oscillating electric dipole and 

it can be further derived as  
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The first-order term is then given by 
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Consequently, the scalar potential can be expressed as 
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Using the vector potential, the magnetic induction field is given by 
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To evaluate E, we first derive the following term   
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Using 
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 AE , we can obtain  
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To be brief, we obtain the electric field and magnetic fields: 
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Restricting ourselves to the two limiting cases then we obtain for the near zone (r<<), 

because the higher powers of r dominate in the denominator and the radiation term drops out: 
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The electric field is just the static electric dipole field. The magnetic field is significantly 

smaller than the electric field in the near-field region. In other words, the fields in the near 

zone are dominantly electric in nature. In the far field (r>>), all terms with the higher 

powers of r can be neglected so that there remains only: 
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It follows directly that in the far zone (n, E, H) form an orthogonal system and E and H can 

be expressed as  

nHE  oZ . 

Therefore, in the far zone E and H are mutually orthogonal outgoing spherical waves, that is, 

propagating in r-direction. 

 

The Poynting vector S of the dipole field 

Substituting nHE  oZ  into the Poynting vector, we obtain for the far zone: 

)()( nHHHHnHnHHES  ooo ZZZ . 

Since nH  , 0nH . So, in the far field the energy-flux density is given by 
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where  is the angle between the axis of oscillation and the position vector r. Therefore, in the 

far zone the energy flux flows in the radial direction, for increasing distance r from the dipole 

it decreases proportional to 1/r2. This is important for energy conservation. Furthermore, a 

sin2-dependence folds in the far field. Obviously, for =0, sin=0 and S=0, that is, in the far 

field the dipole does not radiate in the direction of oscillation. Further, energy is irradiated 

only if there is an acceleration. The bremsstrahlung of accelerated charges is based on this fact. 
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These processes play an important role in heavy-ion physics and also in the acceleration of 

particles by large accelerators. The power radiated per unit solid angle by the oscillating 

dipole moment p is 
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The total power radiated is 
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Assume the electric dipole to be a harmonic oscillation, 
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The time-averaged total power is given by 
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Example: Scattering of light from a polarizable molecule 

Calculate the total cross section for the scattering of light from a polarizable molecule. How 

does the scattering cross section depend on the wavelength  and the polarizability ? 

Solution: The dipole moment induced in the molecule by the electric   ti
oet  EE  of the 

light is  
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This scattering cross section was derived by Lord Rayleigh who used it to explain the 

blueness of the sky and the redness of the sunrise and the sunset. To understand this somewaht 

better we notice first that the polarizability of a nitrogen molecule (the main constitute of the 

air) can be regarded to be approximately equal to that of a conducting sphere of radius 0.12 

nm. For red = 650 nm 

227
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Under normal atmospheric conditions at sea level, the number of molecules per cm3 is 
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Therefore, the mean free path of the red light (that is, the mean path it travels without being 

scattered)  

km 180cm108.1
101.2107.2

11 7
2719 


 n

Lred  

For blue = 470 nm 

km 49
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470km 1801
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n
Lblue  

The sky is blue because the light coming directly from the sun is scattered as soon as it enters 

the atmosphere. The small mean free path of the blue light component compared to the red 

one indicates that the scattering process for the blue light is much more effective than for the 

red one. The redness of the sunset or the sunrise can be explained similarly: At sunrise and 

sunset, the light has to cover a longer path through the atmosphere (in particular, through the 

dense zone). As demonstrated by the mean free paths the blue light is scattered much more 

strongly than the red one. Therefore, the red light remains. These estimations give the 

principles of the process of scattering of light in the atmosphere. Note that statistical 

fluctuations and air pollution may play an important role. 

Radiation from magnetic dipole and electric quadrupole fields 

The second-order term for the vector potential is given by 
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Using the identity C)A(BC)B(ACBA  )( , we can write 
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recognizable as the magnetization due to the current J: 
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The second, symmetric term 
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quadrupole moment density. 

 

Radiation form magnetic dipole 

Considering only the magnetization term, we have the vector potential 
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Then, we can use ΑB   and o/BH  to evaluate the magnetic field:  
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The first term in the bracket can be derived as 
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Using A)B()B(AABABBA  )()()( , we find 
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Summing the last two equations, we obtain 
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The second term in the bracket of Eq. () can be derived as 
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Similarly, using A)B()B(AABABBA  )()()(  
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Therefore, the magnetic field due to a magnetic dipole source is given by 
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Comparing the result for an electric dipole source, the electric field for a magnetic dipole 

source is the negative of Zo times the magnetic field for an electric dipole with c/mp  . 

Therefore, we can obtain 
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All the arguments concerning the behavior of the fields in the near and far zones are the same 

as for the electric dipole source, with the interchange HE oZ , EH oZ , c/mp  . 

Similarly the radiation pattern and total power radiated are the same for the two kinds of 

dipole. The only difference in the radiation fields is in the polarization. For an electric dipole 

the electric vector lies in the plane defined by n and p, while for a magnetic dipole it is 

perpendicular to the plane defined by n and m. 

Radiation form electric quadrupole 

The integral of the symmetric term in the following equations  
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can be transformed by an integration by parts and some rearrangement: 
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The continuity equation has been used to replace 
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the integral involves second moments of the charge density, this symmetric part corresponds 

to an electric quadrupole source. The vector potential is then given by 
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The complete fields are somewhat complicated to write down. We just consider the fields in 
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the radiation zone. The vector potential is then given by  
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Consequently the magnetic field in the radiation zone is 
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The electric field can be determined by nHE  oZ . With the definition for the quadrupole 

moment tensor, 

 )()3( 32  rdrxxQ r , 

the integral in the form of the magnetic field can be written  
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The vector Q(n)  is defined as having components 




 nQQ . 

Note that it depends in magnitude and direction on the direction of observation as well as on 

the properties of the source. Therefore, the magnetic field in the radiation zone is given by 
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and the power radiated per unit solid angle is given by 
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Radiation from extended sources 

When the dimensions of the radiating system are not small compared to the wavelength of 

radiation, the multiple expansion of the potential is not valid and the integrals for the potential 

must be evaluated directly. To discuss more concretely, we consider the radiation arising from 

the thin, linear, center-fed antenna. We choose the z axis to lie along the antenna. The antenna 

of length d is split by a small gap at its midpoint where each half is supplied by current 

ti
oeI

 . To deduce the magnitude of the current on any point of the antenna, we neglect 

radiation damping. The current must be symmetric about the gap in the middle, and further, it 

must vanish at the ends. If the antenna were short, we would expect the entire right side to be 

uniformly charges to one polarity while the other side would be uniformly charged with the 
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opposite polarity. For the one-dimensional problem, the continuity equation then states 

constant//  tzJ  . Thus J would be of the form   )()(2/dconstant)( yxz  . 

Therefore we take 
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The vector potential due to an oscillating current is given by 
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In the radiation zone, we may approximate  
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Since oik /)( AnH   in the radiation zone, it magnitude is  
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Thus the time-averaged power radiated per unit solid angle is 
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Chapter Eleven: Radiation by moving charge 

Lienard-Wiechert Potentials   

Considering a point charge q moving with a velocity )(tq  rv  , the scalar and vector 

potentials are given by 
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For appoint charge q the charge and current densities are 
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The further evaluation can be done with the property of delta function 
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With )()( ttR q  rr , we obtain 
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where   )()( tt qq  rrrrn  is an instantaneous unit vector.  We can have  

nβ 







1
)(11

)(
td
tdR

ctd
tdf

. 

Therefore, 

)()1(

1

4
),(

t

q
t

qo 


rrnβ
r


 

)()1(

)(

4
),(

t

tq
t

q

o





rrnβ

v
rΑ




 

By means of these so-called Lienard-Wiechert potentials, we can now calculate the electric 

and magnetic fields due to a moving charge particle. Although our usual concern is with 

situations where v << c, we will for the moment carry along all orders in v/c so that in the 

future we can deal comfortably with charge particles that are moving at relativistic velocities. 

The work becomes one of differentiating these potentials. That is 
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Differentiating the Lienard-Wiechert potentials for the Radiation fields 

The differentiations of the Lienard-Wiechert potentials are laborious because the retarded time 

mixes the space and time. As a result, when the gradient and the time derivative are to be 

evaluated with present space and time, the process needs to be very careful. For this 

derivation, we have to prepare with a few preliminary derivatives. Let )1( nβ   and , 

)(tR q  rr , we can show that 
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With the expression derived above, the following can be obtained  
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Radiation from slowly moving charges 

When the velocity of the charges is small compared to c, the term involving b will be 

negligible and ~1. The radiation fields become 
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The Poynting vector is given by   
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where  is the angle between the acceleration a and n. The angular distribution of radiation 

from the accelerated charge may be written  
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The total power radiated is found by integrating over the solid angle to be 

2
32

2
2

3

2
2

3

2

3
2

4
1

3
2

4
1

6
F

cm
q

a
c
q

a
c

q
d

d
dPP

ooo 



   

where F = ma is the applied force (the rate of change of momentum). This is the familiar 

Larmor result for a nonrelativistic, accelerated charge. The radiated power depends inversely 

on the square of the mass of the particles involved. Consequently these radiative effects are 

largest for electrons.  
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Radiation from relativistic charges 

Considering the radiation fields only, the fields are given by 
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The differential power radiated in d at retarded time t  is 
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Henceforth we drop the suffix “ret”, keeping in mind that it is unavoidable. Note that nS 2R  

is the power radiated per unit solid angle detected at an observation point at time t of radiation 

emitted by the charge at time t . It can be seen that )/(2 tddtR nS  is the power radiated per 

unit solid angle in terms of the charge’s own time. This formula has the correct 

non-relativistic reduction to Larmor’s formula. It is evident that there are two types of 

relativistic effect present. One is the effect of the specific spatial relationship between  and 

β , which will determine the detailed angular distribution. The other is a general, relativistic 

effect arising from the transformation from the rest frame of the particle to the observer’s 

frame and manifesting itself by the presence of the factor  nβ 1  in the denominator. Now 

we discuss two important special cases: 

1.  and β  are parallel, i.e. a charge particle moves in a straight line but is constantly 

accelerated. This situation occurs in x-ray tubes where a beam of high energy electrons 

impinge on a copper target (or any other target like tungsten) and loses its energy 

constantly. Then two kinds of radiations emerge. One is the characteristic line radiation of 

the target resulting from the atomic transitions. The other is continuous radiation because 

of deceleration of the electron as given by the equation above. Both of the radiations are 

superimposed. The continuous radiation in this case is called Bremsstrahlung. Since  and 

β  are parallel, the angular distribution of the power radiation is given by 
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If  is the angle between the acceleration  and n, then 
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Note that without the 5 term in the denominator, the power pattern would be sin2 type, 

same as Larmor type. However, because ~1 the denominator dominates the power 

pattern and more and more power is thrown in the forward direction as shown in Fig. The 

angle at which the maximum power is radiated can be gotten by 
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we can obtain the equation, 0sin5cos)cos1(2 2   . Solving the equation can 

lead to  
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For ~0.5, corresponding to electrons of ~80 keV, max~38.2o. In ultra-relativistic limit, 

1 , max is very small and we can show  
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where 21/1   . To show this result, we use the asymptotic forms of 

)2/(11 2   for 1  and 2/1cos 2
maxmax    for 0 . With these asymptotic 

forms, we can obtain 
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Thus the angular distribution is confined to a very narrow cone in the direction of motion. 

For a typical particle like electron, with ~0.9, max~12o. Even For relativity, 2cmE o , 

Ecmo 2/2
max   for ~1. Under the circumstances,  sin , 2/1cos 2   and   
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In this same limit the peak intensity is proportional to 8. The natural angular unit is 

evidently -1. The angular distribution is shown in Fig. with angles measured in these units. 

The peak occurs at  = 1/2, and the half-power points at  = 0.23 and  = 0.91. The 

root mean square angle of emission of radiation in the relativistic limit is 

Ecmo /1 22/12 
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The total power radiated can be found by 
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Here we use 
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This result is a relativistic generalization of the Larmor’s formula for the straight line 

motion. In terms of the applied force, we can use 
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for the case of  and β  to be parallel to write the total power radiated as 
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2. Another example of angular distribution of radiation is that for a charge in instantaneously 

circular motion with its acceleration β  perpendicular to its velocity . We choose a 

coordinate system in which, at t ,  lies along the z axis and β  lies along the x axis. In 

Cartesian coordinates, when the observer has angular coordinates  and ,  = (0,0,), 

)0,0,(β β , and )cos,sinsin,cos(sin n . The term ])[( ββnn   then 

becomes 

    ββnββnnβnβnββnn   cos1)(cossin)]([)(])[(   

Which, when squares, gives 
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The angular power distribution becomes 
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From this angular pattern it is clear that the radiation is peaked in the direction of  (Fig.). 

There is a small cashew like lobe which also carries a small energy. In the extreme 

relativistic limit,  is very small. With the approximation similar to the previous case, we 

get 
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This formula indicates that the width of the radiation pattern is 1/.  
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The total power radiated is given by 
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Thus Larmor’s formula gets modified by 4 factor. In terms of the applied force, we can 

use 
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for the case of  and β  to be perpendicular to write the total power radiated as 
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When this is compared to the corresponding result for rectilinear motion, we find that for 

a given magnitude of applied force the radiation emitted with a transverse acceleration is 

a factor of 2 larger than with a parallel acceleration.  
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